18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Towards low-latency real-time detection of gravitational waves from compact binary coalescences in the era of advanced detectors

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation before the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement

          We estimate the number of templates, computational power, and storage required for a one-step matched filtering search for gravitational waves from inspiraling compact binaries. These estimates should serve as benchmarks for the evaluation of more sophisticated strategies such as hierarchical searches. We use waveform templates based on the second post-Newtonian approximation for binaries composed of nonspinning compact bodies in circular orbits. We present estimates for six noise curves: LIGO (three configurations), VIRGO, GEO600, and TAMA. To search for binaries with components more massive than 0.2M_o while losing no more than 10% of events due to coarseness of template spacing, initial LIGO will require about 1*10^11 flops (floating point operations per second) for data analysis to keep up with data acquisition. This is several times higher than estimated in previous work by Owen, in part because of the improved family of templates and in part because we use more realistic (higher) sampling rates. Enhanced LIGO, GEO600, and TAMA will require computational power similar to initial LIGO. Advanced LIGO will require 8*10^11 flops, and VIRGO will require 5*10^12 flops. If the templates are stored rather than generated as needed, storage requirements range from 1.5*10^11 real numbers for TAMA to 6*10^14 for VIRGO. We also sketch and discuss an algorithm for placing the templates in the parameter space.
            Bookmark

            Author and article information

            Journal
            16 August 2011
            Article
            10.1103/PhysRevD.85.102002
            1108.3174
            66d60c70-520b-4249-af8f-a7f9db04073d

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            History
            Custom metadata
            19 pages, 6 figures, for PRD
            gr-qc

            Comments

            Comment on this article