6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Structure and function of desmosomal transmembrane core and plaque molecules

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Desmosomes are intercellular junctions that function in cell-cell adhesion and attachment of intermediate filaments (IF) to the cell surface. Desmogleins and desmocollins are the major components of the transmembrane adhesion complex, whereas desmoplakins (DPs) are the most prominent components of the cytoplasmic plaque. Based on sequence similarity, desmogleins and desmocollins are related to the calcium-dependent homophilic adhesion molecules known as cadherins. Like the classical cadherins, the desmosomal cadherins contain four homologous extracellular domains bearing putative calcium-binding sites, a single transmembrane spanning domain, and a C-terminal cytoplasmic tail. Molecules in the desmoglein subclass contain a unique C-terminal extension within which is found a repeating motif that is predicted to form two beta-strands and two turns. Stable cell lines expressing desmoglein 1 have been generated from normally non-adherent L cell fibroblasts, to study the contribution of this cadherin to desmosomal adhesion. The predicted sequence of desmoplakin (DP) I suggests it will form homodimers comprising a central alpha-helical coiled-coil rod and two globular end domains. The C-terminus contains three regions with significant homology, each of which is made up of a 38-residue motif also found in two other molecules involved in organization of IF, bullous pemphigoid antigen and plectin. Ectopically expressed polypeptides including the C-terminus of DP I specifically align with keratin and vimentin IF in cultured cells, whereas those lacking this domain do not align with IF. The last 68 amino acids of DP are required for alignment along keratin but not vimentin IF, and residues 48-68 from the C-terminal end are critical for this interaction. These results suggest that the C-terminus of DP plays a role in the attachment of IF to the desmosome and that a specific site is necessary for interaction with keratin IF. A sequence at the most N-terminal end of DP appears to be required for efficient incorporation into the desmosomal plaque. Interestingly, this region has not been reported to be present in the homologous bullous pemphigoid antigen or plectin molecules and may represent a desmosomal targeting sequence.

          Related collections

          Author and article information

          Journal
          Biophysical Chemistry
          Biophysical Chemistry
          Elsevier BV
          03014622
          May 1994
          May 1994
          : 50
          : 1-2
          : 97-112
          Article
          10.1016/0301-4622(94)85023-2
          8011944
          66dda848-019a-4aab-8829-23a22707ada5
          © 1994

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article