2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plant Secondary Metabolites with an Overview of Populus

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Populus trees meet continuous difficulties from the environment through their life cycle. To warrant their durability and generation, Populus trees exhibit various types of defenses, including the production of secondary metabolites. Syntheses derived from the shikimate-phenylpropanoid pathway are a varied and plentiful class of secondary metabolites manufactured in Populus. Amongst other main classes of secondary metabolites in Populus are fatty acid and terpenoid-derivatives. Many of the secondary metabolites made by Populus trees have been functionally described. Any others have been associated with particular ecological or biological processes, such as resistance against pests and microbial pathogens or acclimatization to abiotic stresses. Still, the functions of many Populus secondary metabolites are incompletely understood. Furthermore, many secondary metabolites have therapeutic effects, leading to more studies of secondary metabolites and their biosynthesis. This paper reviews the biosynthetic pathways and therapeutic impacts of secondary metabolites in Populus using a genomics approach. Compared with bacteria, fewer known pathways produce secondary metabolites in Populus despite P. trichocarpa having had its genome sequenced.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Flavonoids: an overview

          Flavonoids, a group of natural substances with variable phenolic structures, are found in fruits, vegetables, grains, bark, roots, stems, flowers, tea and wine. These natural products are well known for their beneficial effects on health and efforts are being made to isolate the ingredients so called flavonoids. Flavonoids are now considered as an indispensable component in a variety of nutraceutical, pharmaceutical, medicinal and cosmetic applications. This is attributed to their anti-oxidative, anti-inflammatory, anti-mutagenic and anti-carcinogenic properties coupled with their capacity to modulate key cellular enzyme function. Research on flavonoids received an added impulse with the discovery of the low cardiovascular mortality rate and also prevention of CHD. Information on the working mechanisms of flavonoids is still not understood properly. However, it has widely been known for centuries that derivatives of plant origin possess a broad spectrum of biological activity. Current trends of research and development activities on flavonoids relate to isolation, identification, characterisation and functions of flavonoids and finally their applications on health benefits. Molecular docking and knowledge of bioinformatics are also being used to predict potential applications and manufacturing by industry. In the present review, attempts have been made to discuss the current trends of research and development on flavonoids, working mechanisms of flavonoids, flavonoid functions and applications, prediction of flavonoids as potential drugs in preventing chronic diseases and future research directions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits

            ABSTRACT Anthocyanins are colored water-soluble pigments belonging to the phenolic group. The pigments are in glycosylated forms. Anthocyanins responsible for the colors, red, purple, and blue, are in fruits and vegetables. Berries, currants, grapes, and some tropical fruits have high anthocyanins content. Red to purplish blue-colored leafy vegetables, grains, roots, and tubers are the edible vegetables that contain a high level of anthocyanins. Among the anthocyanin pigments, cyanidin-3-glucoside is the major anthocyanin found in most of the plants. The colored anthocyanin pigments have been traditionally used as a natural food colorant. The color and stability of these pigments are influenced by pH, light, temperature, and structure. In acidic condition, anthocyanins appear as red but turn blue when the pH increases. Chromatography has been largely applied in extraction, separation, and quantification of anthocyanins. Besides the use of anthocyanidins and anthocyanins as natural dyes, these colored pigments are potential pharmaceutical ingredients that give various beneficial health effects. Scientific studies, such as cell culture studies, animal models, and human clinical trials, show that anthocyanidins and anthocyanins possess antioxidative and antimicrobial activities, improve visual and neurological health, and protect against various non-communicable diseases. These studies confer the health effects of anthocyanidins and anthocyanins, which are due to their potent antioxidant properties. Different mechanisms and pathways are involved in the protective effects, including free-radical scavenging pathway, cyclooxygenase pathway, mitogen-activated protein kinase pathway, and inflammatory cytokines signaling. Therefore, this review focuses on the role of anthocyanidins and anthocyanins as natural food colorants and their nutraceutical properties for health. Abbreviations: CVD: Cardiovascular disease VEGF: Vascular endothelial growth factor
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Short chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway

              Microbial metabolites such as short chain fatty acids (SCFAs) are highly produced in the intestine and potentially regulate the immune system. We studied the function of SCFAs in regulation of T cell differentiation into effector and regulatory T cells. We report that SCFAs can directly promote T cell differentiation into T cells producing IL-17, IFN-γ, and/or IL-10 depending on cytokine milieu. This effect of SCFAs on T cells is independent of GPR41- or GPR43 but dependent on direct histone deacetylase (HDAC) inhibitor activity. Inhibition of HDACs in T cells by SCFAs increased the acetylation of p70 S6 kinase and phosphorylation rS6, regulating the mTOR pathway required for generation of Th17, Th1, and IL-10+ T cells. Acetate (C2) administration enhanced the induction of Th1 and Th17 cells during C. rodentium infection but decreased anti-CD3-induced inflammation in an IL-10-dependent manner. Our results indicate that SCFAs promote T cell differentiation into both effector and regulatory T cells to promote either immunity or immune tolerance depending on immunological milieu.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                26 June 2021
                July 2021
                : 22
                : 13
                : 6890
                Affiliations
                [1 ]Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; amir_20364@ 123456yahoo.com (A.A.Z.Y.); 15850682752@ 123456163.com (H.W.); czswb@ 123456njfu.edu.cn (W.S.); m.m2132@ 123456yahoo.com (M.M.); dwli@ 123456njfu.edu.cn (D.L.); qzhuge@ 123456njfu.edu.cn (Q.Z.)
                [2 ]Clinical and Molecular Genetics Units, Institute of Child Health, London WC1N 1EH, UK; paulrutland51@ 123456btinternet.com
                Author notes
                [* ]Correspondence: ali_movahedi@ 123456njfu.edu.cn ; Fax: +86-25-8542-8701
                [†]

                These authors are contributed equally to the first author.

                Author information
                https://orcid.org/0000-0001-5062-504X
                https://orcid.org/0000-0002-0840-0602
                https://orcid.org/0000-0002-9450-487X
                Article
                ijms-22-06890
                10.3390/ijms22136890
                8268465
                34206964
                66e20e19-15b5-4ffd-9d9d-d010903c6b0b
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 12 May 2021
                : 09 June 2021
                Categories
                Review

                Molecular biology
                secondary metabolites,biosynthetic pathways,populus
                Molecular biology
                secondary metabolites, biosynthetic pathways, populus

                Comments

                Comment on this article