30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Food for Song: Expression of C-Fos and ZENK in the Zebra Finch Song Nuclei during Food Aversion Learning

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Specialized neural pathways, the song system, are required for acquiring, producing, and perceiving learned avian vocalizations. Birds that do not learn to produce their vocalizations lack telencephalic song system components. It is not known whether the song system forebrain regions are exclusively evolved for song or whether they also process information not related to song that might reflect their ‘evolutionary history’.

          Methodology/Principal Findings

          To address this question we monitored the induction of two immediate-early genes (IEGs) c-Fos and ZENK in various regions of the song system in zebra finches ( Taeniopygia guttata) in response to an aversive food learning paradigm; this involves the association of a food item with a noxious stimulus that affects the oropharyngeal-esophageal cavity and tongue, causing subsequent avoidance of that food item. The motor response results in beak and head movements but not vocalizations. IEGs have been extensively used to map neuro-molecular correlates of song motor production and auditory processing. As previously reported, neurons in two pallial vocal motor regions, HVC and RA, expressed IEGs after singing. Surprisingly, c-Fos was induced equivalently also after food aversion learning in the absence of singing. The density of c-Fos positive neurons was significantly higher than that of birds in control conditions. This was not the case in two other pallial song nuclei important for vocal plasticity, LMAN and Area X, although singing did induce IEGs in these structures, as reported previously.

          Conclusions/Significance

          Our results are consistent with the possibility that some of the song nuclei may participate in non-vocal learning and the populations of neurons involved in the two tasks show partial overlap. These findings underscore the previously advanced notion that the specialized forebrain pre-motor nuclei controlling song evolved from circuits involved in behaviors related to feeding.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Transcription factors in long-term memory and synaptic plasticity.

          Transcription is a molecular requisite for long-term synaptic plasticity and long-term memory formation. Thus, in the last several years, one main interest of molecular neuroscience has been the identification of families of transcription factors that are involved in both of these processes. Transcription is a highly regulated process that involves the combined interaction and function of chromatin and many other proteins, some of which are essential for the basal process of transcription, while others control the selective activation or repression of specific genes. These regulated interactions ultimately allow a sophisticated response to multiple environmental conditions, as well as control of spatial and temporal differences in gene expression. Evidence based on correlative changes in expression, genetic mutations, and targeted molecular inhibition of gene expression have shed light on the function of transcription in both synaptic plasticity and memory formation. This review provides a brief overview of experimental work showing that several families of transcription factors, including CREB, C/EBP, Egr, AP-1, and Rel, have essential functions in both processes. The results of this work suggest that patterns of transcription regulation represent the molecular signatures of long-term synaptic changes and memory formation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Learned birdsong and the neurobiology of human language.

            Vocal learning, the substrate for human language, is a rare trait found to date in only three distantly related groups of mammals (humans, bats, and cetaceans) and three distantly related groups of birds (parrots, hummingbirds, and songbirds). Brain pathways for vocal learning have been studied in the three bird groups and in humans. Here I present a hypothesis on the relationships and evolution of brain pathways for vocal learning among birds and humans. The three vocal learning bird groups each appear to have seven similar but not identical cerebral vocal nuclei distributed into two vocal pathways, one posterior and one anterior. Humans also appear to have a posterior vocal pathway, which includes projections from the face motor cortex to brainstem vocal lower motor neurons, and an anterior vocal pathway, which includes a strip of premotor cortex, the anterior basal ganglia, and the anterior thalamus. These vocal pathways are not found in vocal non-learning birds or mammals, but are similar to brain pathways used for other types of learning. Thus, I argue that if vocal learning evolved independently among birds and humans, then it did so under strong genetic constraints of a pre-existing basic neural network of the vertebrate brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FOXP2 as a molecular window into speech and language.

              Rare mutations of the FOXP2 transcription factor gene cause a monogenic syndrome characterized by impaired speech development and linguistic deficits. Recent genomic investigations indicate that its downstream neural targets make broader impacts on common language impairments, bridging clinically distinct disorders. Moreover, the striking conservation of both FoxP2 sequence and neural expression in different vertebrates facilitates the use of animal models to study ancestral pathways that have been recruited towards human speech and language. Intriguingly, reduced FoxP2 dosage yields abnormal synaptic plasticity and impaired motor-skill learning in mice, and disrupts vocal learning in songbirds. Converging data indicate that Foxp2 is important for modulating the plasticity of relevant neural circuits. This body of research represents the first functional genetic forays into neural mechanisms contributing to human spoken language.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                10 June 2011
                : 6
                : 6
                : e21157
                Affiliations
                [1 ]Department of the Neurobiology of Memory, P. K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow, Russia
                [2 ]Department of Animal Behavior, Freie Universität Berlin, Berlin, Germany
                Rutgers University, United States of America
                Author notes

                Conceived and designed the experiments: KT AT KA. Performed the experiments: KT AT. Analyzed the data: KT AT CS. Contributed reagents/materials/analysis tools: KT AT CS KA. Wrote the paper: KT AT CS KA.

                Article
                10-PONE-RA-19849
                10.1371/journal.pone.0021157
                3112232
                21695176
                66e38854-d334-4576-94a0-f0cc0011d013
                Tokarev et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 December 2010
                : 20 May 2011
                Page count
                Pages: 15
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Animal Behavior
                Evolutionary Developmental Biology
                Neuroscience
                Behavioral Neuroscience
                Learning and Memory
                Motor Systems
                Neuroanatomy
                Zoology
                Animal Behavior
                Comparative Anatomy

                Uncategorized
                Uncategorized

                Comments

                Comment on this article