Blog
About

4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of indacaterol on daily physical activity in patients with untreated chronic obstructive pulmonary disease

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Indacaterol, a once-daily, long-acting β 2-agonist, may improve not only respiratory function, dyspnea symptoms, and quality of life, but also physical activity for patients with chronic obstructive pulmonary disease (COPD). This study aimed to evaluate the effect of 12-week indacaterol therapy on daytime physical activity in patients with untreated COPD.

          Methods

          The subjects were stable and untreated COPD outpatients with a percent predicted forced expiratory volume in 1 second (%FEV 1) below 80%. Baseline assessments included clinical assessment, respiratory function testing, arterial blood gas analysis, the COPD assessment test (CAT™), and the Medical Outcomes Study 36-Item Short-Form Health Survey, Japanese version 2 (SF-36v2 ®). Patients underwent monitoring by uniaxial accelerometer before and after 12 weeks once-daily inhalation of indacaterol 150 μg/day.

          Results

          Eighteen patients were evaluable. Patient characteristics included a mean age of 74.2 years, and three patients were current smokers. Indacaterol improved mean (± standard deviation [SD]) %FEV 1 from 55.2% (±17.9%) to 61.0% (±17.3%) ( P=0.003), CAT scores from 16.4 (±10.2) points to 12.4 (±8.2) points ( P=0.04), some scales of the SF-36v2 (physical component summary, 41.6±9.7 points to 45.1±7.9 points, P=0.03), and number of daily steps (3,311.5±2,103.3 steps/day to 3,841.8±2,096.8 steps/day, P=0.02), but did not affect daily energy expenditure (85.0±77.2 kcal change to 90.9±56.8 kcal, P=0.29) or exercise duration of an intensity of level 1 or more (36.4±23.9 minutes increase to 40.8±21.6 minutes, P=0.12).

          Conclusion

          Twelve weeks of indacaterol improved respiratory function and quality of life, but did not significantly affect physical activity in patients with moderate-to-severe COPD.

          Related collections

          Most cited references 19

          • Record: found
          • Abstract: found
          • Article: not found

          Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study

          Plausible projections of future mortality and disability are a useful aid in decisions on priorities for health research, capital investment, and training. Rates and patterns of ill health are determined by factors such as socioeconomic development, educational attainment, technological developments, and their dispersion among populations, as well as exposure to hazards such as tobacco. As part of the Global Burden of Disease Study (GBD), we developed three scenarios of future mortality and disability for different age-sex groups, causes, and regions. We used the most important disease and injury trends since 1950 in nine cause-of-death clusters. Regression equations for mortality rates for each cluster by region were developed from gross domestic product per person (in international dollars), average number of years of education, time (in years, as a surrogate for technological change), and smoking intensity, which shows the cumulative effects based on data for 47 countries in 1950-90. Optimistic, pessimistic, and baseline projections of the independent variables were made. We related mortality from detailed causes to mortality from a cause cluster to project more detailed causes. Based on projected numbers of deaths by cause, years of life lived with disability (YLDs) were projected from different relation models of YLDs to years of life lost (YLLs). Population projections were prepared from World Bank projections of fertility and the projected mortality rates. Life expectancy at birth for women was projected to increase in all three scenarios; in established market economies to about 90 years by 2020. Far smaller gains in male life expectancy were projected than in females; in formerly socialist economies of Europe, male life expectancy may not increase at all. Worldwide mortality from communicable maternal, perinatal, and nutritional disorders was expected to decline in the baseline scenario from 17.2 million deaths in 1990 to 10.3 million in 2020. We projected that non-communicable disease mortality will increase from 28.1 million deaths in 1990 to 49.7 million in 2020. Deaths from injury may increase from 5.1 million to 8.4 million. Leading causes of disability-adjusted life years (DALYs) predicted by the baseline model were (in descending order): ischaemic heart disease, unipolar major depression, road-traffic accidents, cerebrovascular disease, chronic obstructive pulmonary disease, lower respiratory infections, tuberculosis, war injuries, diarrhoeal diseases, and HIV. Tobacco-attributable mortality is projected to increase from 3.0 million deaths in 1990 to 8.4 million deaths in 2020. Health trends in the next 25 years will be determined mainly by the ageing of the world's population, the decline in age-specific mortality rates from communicable, maternal, perinatal, and nutritional disorders, the spread of HIV, and the increase in tobacco-related mortality and disability. Projections, by their nature, are highly uncertain, but we found some robust results with implications for health policy.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper.

             W MacNee,  ,  B Celli (2004)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characteristics of physical activities in daily life in chronic obstructive pulmonary disease.

              Quantification of physical activities in daily life in patients with chronic obstructive pulmonary disease has increasing clinical interest. However, detailed comparison with healthy subjects is not available. Furthermore, it is unknown whether time spent actively during daily life is related to lung function, muscle force, or maximal and functional exercise capacity. We assessed physical activities and movement intensity with the DynaPort activity monitor in 50 patients (age 64 +/- 7 years; FEV1 43 +/- 18% predicted) and 25 healthy elderly individuals (age 66 +/- 5 years). Patients showed lower walking time (44 +/- 26 vs. 81 +/- 26 minutes/day), standing time (191 +/- 99 vs. 295 +/- 109 minutes/day), and movement intensity during walking (1.8 +/- 0.3 vs. 2.4 +/- 0.5 m/second2; p < 0.0001 for all), as well as higher sitting time (374 +/- 139 vs. 306 +/- 108 minutes/day; p = 0.04) and lying time (87 +/- 97 vs. 29 +/- 33 minutes/day; p = 0.004). Walking time was highly correlated with the 6-minute walking test (r = 0.76, p < 0.0001) and more modestly to maximal exercise capacity, lung function, and muscle force (0.28 < r < 0.64, p < 0.05). Patients with chronic obstructive pulmonary disease are markedly inactive in daily life. Functional exercise capacity is the strongest correlate of physical activities in daily life.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2015
                27 February 2015
                : 10
                : 439-444
                Affiliations
                [1 ]Department of Respiratory Medicine, Osaka Police Hospital, Tennoji-ku, Osaka, Japan
                [2 ]Department of Internal Medicine, National Hospital Organization, Kinki-Chuo Chest Medical Center, Kita-ku, Sakai, Osaka, Japan
                Author notes
                Correspondence: Seigo Minami, Department of Respiratory Medicine, Osaka Police Hospital, 10-31 Kitayamacho, Tennoji-ku, Osaka 543-0035, Japan, Tel +81 6 6771 6051, Fax +81 6 6771 2838, Email seigominami@ 123456oph.gr.jp

                *These authors contributed equally to this work

                Article
                copd-10-439
                10.2147/COPD.S76836
                4354394
                © 2015 Nishijima et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article