16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predicting Covid-19 pandemic waves with biologically and behaviorally informed universal differential equations

      research-article
      , *
      Heliyon
      Elsevier
      Machine learning, Compartmental model, Covid-19, Physics informed neural networks

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During the COVID-19 pandemic, it became clear that pandemic waves and population responses were locked in a mutual feedback loop in a classic example of a coupled behavior-disease system. We demonstrate for the first time that universal differential equation (UDE) models are able to extract this interplay from data. We develop a UDE model for COVID-19 and test its ability to make predictions of second pandemic waves. We find that UDEs are capable of learning coupled behavior-disease dynamics and predicting second waves in a variety of populations, provided they are supplied with learning biases describing simple assumptions about disease transmission and population response. Though not yet suitable for deployment as a policy-guiding tool, our results demonstrate potential benefits, drawbacks, and useful techniques when applying universal differential equations to coupled systems.

          Highlights

          • Recurrent COVID-19 pandemic waves can result from decision-making processes not included in most epidemic models.

          • Endogenising decision-making through coupled behavior-disease models can improve prediction of subsequent waves.

          • We used a form of machine learning called universal differential equations to show this.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The reproductive number of COVID-19 is higher compared to SARS coronavirus

          Introduction In Wuhan, China, a novel and alarmingly contagious primary atypical (viral) pneumonia broke out in December 2019. It has since been identified as a zoonotic coronavirus, similar to SARS coronavirus and MERS coronavirus and named COVID-19. As of 8 February 2020, 33 738 confirmed cases and 811 deaths have been reported in China. Here we review the basic reproduction number (R 0) of the COVID-19 virus. R 0 is an indication of the transmissibility of a virus, representing the average number of new infections generated by an infectious person in a totally naïve population. For R 0 > 1, the number infected is likely to increase, and for R 0 < 1, transmission is likely to die out. The basic reproduction number is a central concept in infectious disease epidemiology, indicating the risk of an infectious agent with respect to epidemic spread. Methods and Results PubMed, bioRxiv and Google Scholar were accessed to search for eligible studies. The term ‘coronavirus & basic reproduction number’ was used. The time period covered was from 1 January 2020 to 7 February 2020. For this time period, we identified 12 studies which estimated the basic reproductive number for COVID-19 from China and overseas. Table 1 shows that the estimates ranged from 1.4 to 6.49, with a mean of 3.28, a median of 2.79 and interquartile range (IQR) of 1.16. Table 1 Published estimates of R 0 for 2019-nCoV Study (study year) Location Study date Methods Approaches R 0 estimates (average) 95% CI Joseph et al. 1 Wuhan 31 December 2019–28 January 2020 Stochastic Markov Chain Monte Carlo methods (MCMC) MCMC methods with Gibbs sampling and non-informative flat prior, using posterior distribution 2.68 2.47–2.86 Shen et al. 2 Hubei province 12–22 January 2020 Mathematical model, dynamic compartmental model with population divided into five compartments: susceptible individuals, asymptomatic individuals during the incubation period, infectious individuals with symptoms, isolated individuals with treatment and recovered individuals R 0 = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\beta$\end{document} / \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\beta$\end{document} = mean person-to-person transmission rate/day in the absence of control interventions, using nonlinear least squares method to get its point estimate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha$\end{document} = isolation rate = 6 6.49 6.31–6.66 Liu et al. 3 China and overseas 23 January 2020 Statistical exponential Growth, using SARS generation time = 8.4 days, SD = 3.8 days Applies Poisson regression to fit the exponential growth rateR 0 = 1/M(−𝑟)M = moment generating function of the generation time distributionr = fitted exponential growth rate 2.90 2.32–3.63 Liu et al. 3 China and overseas 23 January 2020 Statistical maximum likelihood estimation, using SARS generation time = 8.4 days, SD = 3.8 days Maximize log-likelihood to estimate R 0 by using surveillance data during a disease epidemic, and assuming the secondary case is Poisson distribution with expected value R 0 2.92 2.28–3.67 Read et al. 4 China 1–22 January 2020 Mathematical transmission model assuming latent period = 4 days and near to the incubation period Assumes daily time increments with Poisson-distribution and apply a deterministic SEIR metapopulation transmission model, transmission rate = 1.94, infectious period =1.61 days 3.11 2.39–4.13 Majumder et al. 5 Wuhan 8 December 2019 and 26 January 2020 Mathematical Incidence Decay and Exponential Adjustment (IDEA) model Adopted mean serial interval lengths from SARS and MERS ranging from 6 to 10 days to fit the IDEA model, 2.0–3.1 (2.55) / WHO China 18 January 2020 / / 1.4–2.5 (1.95) / Cao et al. 6 China 23 January 2020 Mathematical model including compartments Susceptible-Exposed-Infectious-Recovered-Death-Cumulative (SEIRDC) R = K 2 (L × D) + K(L + D) + 1L = average latent period = 7,D = average latent infectious period = 9,K = logarithmic growth rate of the case counts 4.08 / Zhao et al. 7 China 10–24 January 2020 Statistical exponential growth model method adopting serial interval from SARS (mean = 8.4 days, SD = 3.8 days) and MERS (mean = 7.6 days, SD = 3.4 days) Corresponding to 8-fold increase in the reporting rateR 0 = 1/M(−𝑟)𝑟 =intrinsic growth rateM = moment generating function 2.24 1.96–2.55 Zhao et al. 7 China 10–24 January 2020 Statistical exponential growth model method adopting serial interval from SARS (mean = 8.4 days, SD = 3.8 days) and MERS (mean = 7.6 days, SD = 3.4 days) Corresponding to 2-fold increase in the reporting rateR 0 = 1/M(−𝑟)𝑟 =intrinsic growth rateM = moment generating function 3.58 2.89–4.39 Imai (2020) 8 Wuhan January 18, 2020 Mathematical model, computational modelling of potential epidemic trajectories Assume SARS-like levels of case-to-case variability in the numbers of secondary cases and a SARS-like generation time with 8.4 days, and set number of cases caused by zoonotic exposure and assumed total number of cases to estimate R 0 values for best-case, median and worst-case 1.5–3.5 (2.5) / Julien and Althaus 9 China and overseas 18 January 2020 Stochastic simulations of early outbreak trajectories Stochastic simulations of early outbreak trajectories were performed that are consistent with the epidemiological findings to date 2.2 Tang et al. 10 China 22 January 2020 Mathematical SEIR-type epidemiological model incorporates appropriate compartments corresponding to interventions Method-based method and Likelihood-based method 6.47 5.71–7.23 Qun Li et al. 11 China 22 January 2020 Statistical exponential growth model Mean incubation period = 5.2 days, mean serial interval = 7.5 days 2.2 1.4–3.9 Averaged 3.28 CI, Confidence interval. Figure 1 Timeline of the R 0 estimates for the 2019-nCoV virus in China The first studies initially reported estimates of R 0 with lower values. Estimations subsequently increased and then again returned in the most recent estimates to the levels initially reported (Figure 1). A closer look reveals that the estimation method used played a role. The two studies using stochastic methods to estimate R 0, reported a range of 2.2–2.68 with an average of 2.44. 1 , 9 The six studies using mathematical methods to estimate R 0 produced a range from 1.5 to 6.49, with an average of 4.2. 2 , 4–6 , 8 , 10 The three studies using statistical methods such as exponential growth estimated an R 0 ranging from 2.2 to 3.58, with an average of 2.67. 3 , 7 , 11 Discussion Our review found the average R 0 to be 3.28 and median to be 2.79, which exceed WHO estimates from 1.4 to 2.5. The studies using stochastic and statistical methods for deriving R 0 provide estimates that are reasonably comparable. However, the studies using mathematical methods produce estimates that are, on average, higher. Some of the mathematically derived estimates fall within the range produced the statistical and stochastic estimates. It is important to further assess the reason for the higher R 0 values estimated by some the mathematical studies. For example, modelling assumptions may have played a role. In more recent studies, R 0 seems to have stabilized at around 2–3. R 0 estimations produced at later stages can be expected to be more reliable, as they build upon more case data and include the effect of awareness and intervention. It is worthy to note that the WHO point estimates are consistently below all published estimates, although the higher end of the WHO range includes the lower end of the estimates reviewed here. R 0 estimates for SARS have been reported to range between 2 and 5, which is within the range of the mean R 0 for COVID-19 found in this review. Due to similarities of both pathogen and region of exposure, this is expected. On the other hand, despite the heightened public awareness and impressively strong interventional response, the COVID-19 is already more widespread than SARS, indicating it may be more transmissible. Conclusions This review found that the estimated mean R 0 for COVID-19 is around 3.28, with a median of 2.79 and IQR of 1.16, which is considerably higher than the WHO estimate at 1.95. These estimates of R 0 depend on the estimation method used as well as the validity of the underlying assumptions. Due to insufficient data and short onset time, current estimates of R 0 for COVID-19 are possibly biased. However, as more data are accumulated, estimation error can be expected to decrease and a clearer picture should form. Based on these considerations, R 0 for COVID-19 is expected to be around 2–3, which is broadly consistent with the WHO estimate. Author contributions J.R. and A.W.S. had the idea, and Y.L. did the literature search and created the table and figure. Y.L. and A.W.S. wrote the first draft; A.A.G. drafted the final manuscript. All authors contributed to the final manuscript. Conflict of interest None declared.
            • Record: found
            • Abstract: not found
            • Article: not found

            The Mathematics of Infectious Diseases

              • Record: found
              • Abstract: not found
              • Article: not found

              Physics-informed machine learning

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                05 February 2024
                29 February 2024
                05 February 2024
                : 10
                : 4
                : e25363
                Affiliations
                [0010]Department of Applied Mathematics, University of Waterloo, 200 University Ave West, Waterloo, Ontario, Canada
                Author notes
                [* ]Corresponding author. cbauch@ 123456uwaterloo.ca
                Article
                S2405-8440(24)01394-X e25363
                10.1016/j.heliyon.2024.e25363
                10869765
                38370214
                66f72a9d-3751-4526-a336-9f2a09ee736a
                © 2024 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 28 July 2023
                : 29 December 2023
                : 25 January 2024
                Categories
                Research Article

                machine learning,compartmental model,covid-19,physics informed neural networks

                Comments

                Comment on this article

                Related Documents Log