4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Thermal ecology of the federally endangered blunt-nosed leopard lizard (Gambelia sila)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recognizing how climate change will impact populations can aid in making decisions about approaches for conservation of endangered species. The blunt-nosed leopard lizard (Gambelia sila) is a federally endangered species that, despite protection, remains in extremely arid, hot areas and may be at risk of extirpation due to climate change. We collected data on the field-active body temperatures, preferred body temperatures and upper thermal tolerance of G. sila. We then described available thermal habitat using biophysical models, which allowed us to (i) describe patterns in lizard body temperatures, microhabitat temperatures and lizard microhabitat use; (ii) quantify the lizards’ thermoregulatory accuracy; (iii) calculate the number of hours they are currently thermally restricted in microhabitat use; (iv) project how the number of restricted hours will change in the future as ambient temperatures rise; and (v) assess the importance of giant kangaroo rat burrows and shade-providing shrubs in the current and projected future thermal ecology of G. sila. Lizards maintained fairly consistent daytime body temperatures over the course of the active season, and use of burrows and shrubs increased as the season progressed and ambient temperatures rose. During the hottest part of the year, lizards shuttled among kangaroo rat burrows, shrubs, and open habitat to maintain body temperatures below their upper thermal tolerance, but, occasionally, higher than their preferred body temperature range. Lizards are restricted from staying in the open habitat for 75% of daylight hours and are forced to seek refuge under shrubs or burrows to avoid surpassing their upper thermal threshold. After applying climatic projections of 1 and 2°C increases to 2018 ambient temperatures, G. sila will lose additional hours of activity time that could compound stressors faced by this population, potentially leading to extirpation.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          A globally coherent fingerprint of climate change impacts across natural systems.

          Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecological responses to recent climate change.

            There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organizational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extinction risk from climate change.

              Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
                Bookmark

                Author and article information

                Journal
                Conservation Physiology
                Oxford University Press (OUP)
                2051-1434
                2020
                January 01 2020
                2020
                January 01 2020
                February 28 2020
                : 8
                : 1
                Affiliations
                [1 ]Biological Sciences Department, California Polytechnic State University, 1 Grand Ave. San Luis Obispo, CA 93401-0401, USA
                [2 ]Department of Biology, York University, 4700 Keele St. Toronto, Ontario M3J1P3, Canada
                [3 ]Central Coast Field Office, US Bureau of Land Management, 940 2nd Ave. Marina, CA 93933, USA
                Article
                10.1093/conphys/coaa014
                7047230
                33649711
                6715b71c-2d60-4a89-9877-3aa12509f148
                © 2020
                History

                Comments

                Comment on this article