40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The AnnoLite and AnnoLyze programs for comparative annotation of protein structures

      research-article
      1 , , 2 , 3 , 2 , 2 , 3 , 2
      BMC Bioinformatics
      BioMed Central
      The Second Automated Function Prediction Meeting
      30 August – 1 September 2006

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Advances in structural biology, including structural genomics, have resulted in a rapid increase in the number of experimentally determined protein structures. However, about half of the structures deposited by the structural genomics consortia have little or no information about their biological function. Therefore, there is a need for tools for automatically and comprehensively annotating the function of protein structures. We aim to provide such tools by applying comparative protein structure annotation that relies on detectable relationships between protein structures to transfer functional annotations. Here we introduce two programs, AnnoLite and AnnoLyze, which use the structural alignments deposited in the DBAli database.

          Description

          AnnoLite predicts the SCOP, CATH, EC, InterPro, PfamA, and GO terms with an average sensitivity of ~90% and average precision of ~80%. AnnoLyze predicts ligand binding site and domain interaction patches with an average sensitivity of ~70% and average precision of ~30%, correctly localizing binding sites for small molecules in ~95% of its predictions.

          Conclusion

          The AnnoLite and AnnoLyze programs for comparative annotation of protein structures can reliably and automatically annotate new protein structures. The programs are fully accessible via the Internet as part of the DBAli suite of tools at http://salilab.org/DBAli/.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Pfam protein families database.

            Pfam is a large collection of protein families and domains. Over the past 2 years the number of families in Pfam has doubled and now stands at 6190 (version 10.0). Methodology improvements for searching the Pfam collection locally as well as via the web are described. Other recent innovations include modelling of discontinuous domains allowing Pfam domain definitions to be closer to those found in structure databases. Pfam is available on the web in the UK (http://www.sanger.ac.uk/Software/Pfam/), the USA (http://pfam.wustl.edu/), France (http://pfam.jouy.inra.fr/) and Sweden (http://Pfam.cgb.ki.se/).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes.

              We present a simple but powerful procedure to extract Gene Ontology (GO) terms that are significantly over- or under-represented in sets of genes within the context of a genome-scale experiment (DNA microarray, proteomics, etc.). Said procedure has been implemented as a web application, FatiGO, allowing for easy and interactive querying. FatiGO, which takes the multiple-testing nature of statistical contrast into account, currently includes GO associations for diverse organisms (human, mouse, fly, worm and yeast) and the TrEMBL/Swissprot GOAnnotations@EBI correspondences from the European Bioinformatics Institute.
                Bookmark

                Author and article information

                Conference
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central (London )
                1471-2105
                2007
                22 May 2007
                : 8
                : Suppl 4
                : S4
                Affiliations
                [1 ]Structural Genomics Unit, Bioinformatics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
                [2 ]Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, and California Institute for Quantitative Biomedical Research, University of California at San Francisco, San Francisco, CA 94143, USA
                [3 ]Functional Genomics Unit, Bioinformatics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
                Article
                1471-2105-8-S4-S4
                10.1186/1471-2105-8-S4-S4
                1892083
                17570147
                6720d453-f0ad-47be-a94e-e9bc5e93f54f
                Copyright © 2007 Marti-Renom et al; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The Second Automated Function Prediction Meeting
                La Jolla, CA, USA
                30 August – 1 September 2006
                History
                Categories
                Proceedings

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article