210
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigenetic Control of Effector Gene Expression in the Plant Pathogenic Fungus Leptosphaeria maculans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant pathogens secrete an arsenal of small secreted proteins (SSPs) acting as effectors that modulate host immunity to facilitate infection. SSP-encoding genes are often located in particular genomic environments and show waves of concerted expression at diverse stages of plant infection. To date, little is known about the regulation of their expression. The genome of the Ascomycete Leptosphaeria maculans comprises alternating gene-rich GC-isochores and gene-poor AT-isochores. The AT-isochores harbor mosaics of transposable elements, encompassing one-third of the genome, and are enriched in putative effector genes that present similar expression patterns, namely no expression or low-level expression during axenic cultures compared to strong induction of expression during primary infection of oilseed rape ( Brassica napus). Here, we investigated the involvement of one specific histone modification, histone H3 lysine 9 methylation (H3K9me3), in epigenetic regulation of concerted effector gene expression in L. maculans. For this purpose, we silenced the expression of two key players in heterochromatin assembly and maintenance, HP1 and DIM-5 by RNAi. By using HP1-GFP as a heterochromatin marker, we observed that almost no chromatin condensation is visible in strains in which LmDIM5 was silenced by RNAi. By whole genome oligoarrays we observed overexpression of 369 or 390 genes, respectively, in the silenced- LmHP1 and - LmDIM5 transformants during growth in axenic culture, clearly favouring expression of SSP-encoding genes within AT-isochores. The ectopic integration of four effector genes in GC-isochores led to their overexpression during growth in axenic culture. These data strongly suggest that epigenetic control, mediated by HP1 and DIM-5, represses the expression of at least part of the effector genes located in AT-isochores during growth in axenic culture. Our hypothesis is that changes of lifestyle and a switch toward pathogenesis lift chromatin-mediated repression, allowing a rapid response to new environmental conditions.

          Author Summary

          Effectors are key players in pathogenicity of microbes toward plants. Effector genes usually show concerted expression during plant infection but how this concerted expression is generated remains a largely unexplored research topic. Epigenetic mechanisms are involved in genome maintenance and integrity but are increasingly considered as important for regulation of gene expression in numerous and diverse organisms. Here we show that the genomic environment has impact on expression of Leptosphaeria maculans effector genes, and that an epigenetic mechanism that relies on two proteins involved in heterochromatin formation and maintenance, HP1 and DIM-5, modulates this expression, leading to repression during growth in axenic culture. Chromatin decondensation by removal of histone H3 lysine 9 methylation and/or HP1 is presumably a prerequisite for effector gene expression during primary infection of oilseed rape. Thus we show chromatin-based transcriptional regulation that can act on effector gene expression in fungi. Our study highlights the importance of heterochromatic landscapes, not only for genome maintenance but also in rapid and efficient adaptation of organisms to changing environmental situations.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis.

          Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genesis: cluster analysis of microarray data.

            A versatile, platform independent and easy to use Java suite for large-scale gene expression analysis was developed. Genesis integrates various tools for microarray data analysis such as filters, normalization and visualization tools, distance measures as well as common clustering algorithms including hierarchical clustering, self-organizing maps, k-means, principal component analysis, and support vector machines. The results of the clustering are transparent across all implemented methods and enable the analysis of the outcome of different algorithms and parameters. Additionally, mapping of gene expression data onto chromosomal sequences was implemented to enhance promoter analysis and investigation of transcriptional control mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of fungal secondary metabolism.

              Fungi produce a multitude of low-molecular-mass compounds known as secondary metabolites, which have roles in a range of cellular processes such as transcription, development and intercellular communication. In addition, many of these compounds now have important applications, for instance, as antibiotics or immunosuppressants. Genome mining efforts indicate that the capability of fungi to produce secondary metabolites has been substantially underestimated because many of the fungal secondary metabolite biosynthesis gene clusters are silent under standard cultivation conditions. In this Review, I describe our current understanding of the regulatory elements that modulate the transcription of genes involved in secondary metabolism. I also discuss how an improved knowledge of these regulatory elements will ultimately lead to a better understanding of the physiological and ecological functions of these important compounds and will pave the way for a novel avenue to drug discovery through targeted activation of silent gene clusters.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                March 2014
                6 March 2014
                : 10
                : 3
                : e1004227
                Affiliations
                [1 ]INRA, UR 1290 BIOGER-CPP, Thiverval-Grignon, France
                [2 ]Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
                University of Exeter, United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JLS MF TR IF. Performed the experiments: JLS MEG NG BO JL MHB MF LRC IF. Analyzed the data: JLS JL JG MF TR IF. Wrote the paper: JLS MF TR IF.

                Article
                PGENETICS-D-13-03255
                10.1371/journal.pgen.1004227
                3945186
                24603691
                6724c84e-df95-4ad9-83b0-b7b2087e906e
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 November 2013
                : 22 January 2014
                Page count
                Pages: 19
                Funding
                JLS was funded by a Young Scientist Funding by INRA. Part of this work was funded by Agence Nationale de la Recherche (FungIsochores project; ANR- 09-GENM-028). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Agriculture
                Biology
                Genetics
                Epigenetics
                Chromatin
                Genomics
                Genome Analysis Tools
                Transcriptomes
                Functional Genomics
                Genome Expression Analysis
                Microbiology
                Mycology
                Fungi
                Host-Pathogen Interaction
                Microbial Control
                Microbial Pathogens
                Pathogenesis
                Plant Science
                Plant Pathology
                Plant Pathogens

                Genetics
                Genetics

                Comments

                Comment on this article