5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhancement of Toxic Efficacy of Alkylated Polycyclic Aromatic Hydrocarbons Transformed by Sphingobium quisquiliarum

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alkylated polycyclic aromatic hydrocarbons (PAHs) are abundant in crude oils and refined petroleum products and are considered as major contributors to the toxicity of spilled oils. In this study, the microbial degradation of model (alkylated) PAHs (i.e., phenanthrene, 3-methylphenanthrene, 3,6-dimethylphenanthrene (36DMPhe), pyrene, and 1-methylpyrene (1MP)) by the bacterium Sphingobium quisquiliarum EPA505, a known degrader of PAHs, was studied. To evaluate the toxic potential of the metabolic products, reaction mixtures containing metabolites of 36DMPhe and 1MP were fractionated by high-performance liquid chromatography, and their effects on the luminescence inhibition of Aliivibrio fischeri were evaluated. Although the luminescence inhibition of 36DMPhe and 1MP at their solubility levels was not observed, inhibition was observed in their metabolite fractions at the solubility limit of their parent molecule. This indicates that initial biotransformation increases the toxicity of alkylated PAHs because of the increased solubility and/or inherent toxicity of metabolites. Qualitative analysis of the metabolite fractions suggested that mono-oxidation of the methyl group is the main metabolic pathway of 36DMPhe and 1MP.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review

          Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed toward removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main purpose of this review is to provide an overview of current knowledge of bacteria, halophilic archaea, fungi and algae mediated degradation/transformation of PAHs. In addition, factors affecting PAHs degradation in the environment, recent advancement in genetic, genomic, proteomic and metabolomic techniques are also highlighted with an aim to facilitate the development of a new insight into the bioremediation of PAH in the environment.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Classifying environmental pollutants

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Kinetic studies of pigment synthesis by non-sulfur purple bacteria.

                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                03 September 2020
                September 2020
                : 17
                : 17
                : 6416
                Affiliations
                Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; smithy1028@ 123456hanmail.net
                Author notes
                [* ]Correspondence: junghwankwon@ 123456korea.ac.kr ; Tel.: +82-2-3290-3041
                Author information
                https://orcid.org/0000-0002-3558-6801
                https://orcid.org/0000-0002-6341-7562
                Article
                ijerph-17-06416
                10.3390/ijerph17176416
                7503419
                67291aea-f7ba-4662-a3c6-3a84435ae2ef
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 August 2020
                : 01 September 2020
                Categories
                Article

                Public health
                polycyclic aromatic hydrocarbons (pahs),biodegradation,biotransformation,aquatic toxicology,oil spills

                Comments

                Comment on this article