90
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The deubiquitinating enzyme CYLD has recently been implicated in the regulation of signal transduction, but its physiological function and mechanism of action are still elusive. In this study, we show that CYLD plays a pivotal role in regulating T cell activation and homeostasis. T cells derived from Cyld knockout mice display a hyperresponsive phenotype and mediate the spontaneous development of intestinal inflammation. Interestingly, CYLD targets a ubiquitin-dependent kinase, transforming growth factor–β-activated kinase 1 (Tak1), and inhibits its ubiquitination and autoactivation. Cyld-deficient T cells exhibit constitutively active Tak1 and its downstream kinases c-Jun N-terminal kinase and IκB kinase β. These results emphasize a critical role for CYLD in preventing spontaneous activation of the Tak1 axis of T cell signaling and, thereby, maintaining normal T cell function.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.

          Crohn's disease and ulcerative colitis, the two main types of chronic inflammatory bowel disease, are multifactorial conditions of unknown aetiology. A susceptibility locus for Crohn's disease has been mapped to chromosome 16. Here we have used a positional-cloning strategy, based on linkage analysis followed by linkage disequilibrium mapping, to identify three independent associations for Crohn's disease: a frameshift variant and two missense variants of NOD2, encoding a member of the Apaf-1/Ced-4 superfamily of apoptosis regulators that is expressed in monocytes. These NOD2 variants alter the structure of either the leucine-rich repeat domain of the protein or the adjacent region. NOD2 activates nuclear factor NF-kB; this activating function is regulated by the carboxy-terminal leucine-rich repeat domain, which has an inhibitory role and also acts as an intracellular receptor for components of microbial pathogens. These observations suggest that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn's disease that can now be further investigated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo.

            TGF-beta-activated kinase 1 (TAK1), a member of the MAPKKK family, is thought to be a key modulator of the inducible transcription factors NF-kappaB and AP-1 and, therefore, plays a crucial role in regulating the genes that mediate inflammation. Although in vitro biochemical studies have revealed the existence of a TAK1 complex, which includes TAK1 and the adapter proteins TAB1 and TAB2, it remains unclear which members of this complex are essential for signaling. To analyze the function of TAK1 in vivo, we have deleted the Tak1 gene in mice, with the resulting phenotype being early embryonic lethality. Using embryonic fibroblasts lacking TAK1, TAB1, or TAB2, we have found that TNFR1, IL-1R, TLR3, and TLR4-mediated NF-kappaB and AP-1 activation are severely impaired in Tak1(m/m) cells, but they are normal in Tab1(-/-) and Tab2(-/-) cells. In addition, Tak1(m/m) cells are highly sensitive to TNF-induced apoptosis. TAK1 mediates IKK activation in TNF-alpha and IL-1 signaling pathways, where it functions downstream of RIP1-TRAF2 and MyD88-IRAK1-TRAF6, respectively. However, TAK1 is not required for NF-kappaB activation through the alternative pathway following LT-beta signaling. In the TGF-beta signaling pathway, TAK1 deletion leads to impaired NF-kappaB and c-Jun N-terminal kinase (JNK) activation without impacting Smad2 activation or TGF-beta-induced gene expression. Therefore, our studies suggests that TAK1 acts as an upstream activating kinase for IKKbeta and JNK, but not IKKalpha, revealing an unexpectedly specific role of TAK1 in inflammatory signaling pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signalling pathways and molecular interactions of NOD1 and NOD2.

              The NOD (nucleotide-binding oligomerization domain) proteins NOD1 and NOD2 have important roles in innate immunity as sensors of microbial components derived from bacterial peptidoglycan. The importance of these molecules is underscored by the fact that mutations in the gene that encodes NOD2 occur in a subpopulation of patients with Crohn's disease, and NOD1 has also been shown to participate in host defence against infection with Helicobacter pylori. Here, we focus on the molecular interactions between these NOD proteins and other intracellular molecules to elucidate the mechanisms by which NOD1 and NOD2 contribute to the maintenance of mucosal homeostasis and the induction of mucosal inflammation.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                11 June 2007
                : 204
                : 6
                : 1475-1485
                Affiliations
                [1 ]Department of Microbiology and Immunology, [2 ]Department of Pathology, and [3 ]Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033
                Author notes

                CORRESPONDENCE Shao-Cong Sun: sxs70@ 123456psu.edu

                Article
                20062694
                10.1084/jem.20062694
                2118606
                17548520
                673c9294-fc3c-4932-bd5e-62ea43e3d009
                Copyright © 2007, The Rockefeller University Press
                History
                : 22 December 2006
                : 10 May 2007
                Categories
                Articles
                Article

                Medicine
                Medicine

                Comments

                Comment on this article