17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AIF inhibits tumor metastasis by protecting PTEN from oxidation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Apoptosis-inducing factor (AIF) exerts dual roles on cell death and survival, but its substrates as a putative oxidoreductase and roles in tumorigenesis remain elusive. Here, we report that AIF physically interacts with and inhibits the oxidation of phosphatase and tensin homolog on chromosome ten (PTEN), a tumor suppressor susceptible for oxidation-mediated inactivation. More intriguingly, we also identify PTEN as a mitochondrial protein and the ectopic expression of mitochondrial targeting sequence-carrying PTEN almost completely inhibits Akt phosphorylation in PTEN-deficient cells. AIF knockdown causes oxidation-mediated inactivation of the lipid phosphatase activity of PTEN, with ensuing activation of Akt kinase, phosphorylation of the Akt substrate GSK-3β, and activation of β-catenin signaling in cancer cells. Through its effect on β-catenin signaling, AIF inhibits epithelial–mesenchymal transition (EMT) and metastasis of cancer cells in vitro and in orthotopically implanted xenografts. Accordingly, the expression of AIF is correlated with the survival of human patients with cancers of multiple origins. These results identify PTEN as the substrate of AIF oxidoreductase and reveal a novel function for AIF in controlling tumor metastasis.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular characterization of mitochondrial apoptosis-inducing factor.

          Mitochondria play a key part in the regulation of apoptosis (cell death). Their intermembrane space contains several proteins that are liberated through the outer membrane in order to participate in the degradation phase of apoptosis. Here we report the identification and cloning of an apoptosis-inducing factor, AIF, which is sufficient to induce apoptosis of isolated nuclei. AIF is a flavoprotein of relative molecular mass 57,000 which shares homology with the bacterial oxidoreductases; it is normally confined to mitochondria but translocates to the nucleus when apoptosis is induced. Recombinant AIF causes chromatin condensation in isolated nuclei and large-scale fragmentation of DNA. It induces purified mitochondria to release the apoptogenic proteins cytochrome c and caspase-9. Microinjection of AIF into the cytoplasm of intact cells induces condensation of chromatin, dissipation of the mitochondrial transmembrane potential, and exposure of phosphatidylserine in the plasma membrane. None of these effects is prevented by the wide-ranging caspase inhibitor known as Z-VAD.fmk. Overexpression of Bcl-2, which controls the opening of mitochondrial permeability transition pores, prevents the release of AIF from the mitochondrion but does not affect its apoptogenic activity. These results indicate that AIF is a mitochondrial effector of apoptotic cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Convergence of Wnt, beta-catenin, and cadherin pathways.

            W Nelson (2004)
            The specification and proper arrangements of new cell types during tissue differentiation require the coordinated regulation of gene expression and precise interactions between neighboring cells. Of the many growth factors involved in these events, Wnts are particularly interesting regulators, because a key component of their signaling pathway, beta-catenin, also functions as a component of the cadherin complex, which controls cell-cell adhesion and influences cell migration. Here, we assemble evidence of possible interrelations between Wnt and other growth factor signaling, beta-catenin functions, and cadherin-mediated adhesion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate.

              Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) is a key molecule involved in cell growth signaling. We demonstrated that overexpression of PTEN, a putative tumor suppressor, reduced insulin-induced PtdIns(3,4,5)P3 production in human 293 cells without effecting insulin-induced phosphoinositide 3-kinase activation. Further, transfection of the catalytically inactive mutant of PTEN (C124S) caused PtdIns(3,4,5)P3 accumulation in the absence of insulin stimulation. Purified recombinant PTEN catalyzed dephosphorylation of PtdIns(3,4,5)P3, specifically at position 3 on the inositol ring. PTEN also exhibited 3-phosphatase activity toward inositol 1,3,4,5-tetrakisphosphate. Our results raise the possibility that PTEN acts in vivo as a phosphoinositide 3-phosphatase by regulating PtdIns(3,4,5)P3 levels. As expected, the C124S mutant of PTEN was incapable of catalyzing dephosphorylation of PtdIns(3,4,5)P3 consistent with the mechanism observed in protein-tyrosine phosphatase-catalyzed reactions.
                Bookmark

                Author and article information

                Journal
                EMBO Rep
                EMBO Rep
                embr
                EMBO Reports
                John Wiley & Sons, Ltd (Chichester, UK )
                1469-221X
                1469-3178
                November 2015
                28 September 2015
                : 16
                : 11
                : 1563-1580
                Affiliations
                [1 ]Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM) Shanghai, China
                [2 ]Life Sciences Institute, University of Michigan Ann Arbor, MI, USA
                [3 ]Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences-SJTU-SM Shanghai, China
                Author notes
                *Corresponding author. Tel/Fax: +86 21 64154900; E-mails: chengq@ 123456shsmu.edu.cn ; gqchen@ 123456sibs.ac.cn

                Subject Categories Cancer

                [†]

                These authors contributed equally to this work

                Article
                10.15252/embr.201540536
                4641507
                26415504
                6743d4c0-381c-4287-9291-0a5bf24d4fe6
                © 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license

                This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 13 April 2015
                : 25 August 2015
                : 26 August 2015
                Categories
                Articles

                Molecular biology
                aif,cancer metastasis,oxidation,pten,β-catenin signaling
                Molecular biology
                aif, cancer metastasis, oxidation, pten, β-catenin signaling

                Comments

                Comment on this article