11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immunologically Active Components in Human Milk and Development of Atopic Disease, With Emphasis on Food Allergy, in the Pediatric Population

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast-feeding is currently recommended to prevent the development of allergic diseases; however, data are conflicting and mechanisms are unclear. The immunomodulatory composition of human milk is poorly characterized and varies between mothers. We and others have shown that high levels of human milk IgA and certain cytokines and human milk oligosaccharides are associated with protection against food allergy in the infant, but it is unclear whether they are responsible for or simply biomarkers of the vertical transfer of protection. Because human milk has pre- and probiotic properties, the anti-allergy protection afforded by human milk may be due to its control on the developing gut microbiome. In mice, murine milk IgA supports gut homeostasis and shapes the microbiota, which in turn diversifies the intestinal IgA repertoire that reciprocally promotes the diversity of gut microbiome; these mechanisms are poorly understood in humans. In addition, several human milk bioactives are immunostimulatory, which may in part provide protection against allergic diseases. The regulation of immunologically active components in human milk is incompletely understood, although accumulating evidence suggests that IgA and cytokines in human milk reflect maternal exposures. This review summarizes the current literature on human milk components that have been associated with protection against food allergy and related allergic disorders in early childhood and discusses the work relating to regulation of these levels in human milk and possible mechanisms of action.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome.

          Following birth, the breast-fed infant gastrointestinal tract is rapidly colonized by a microbial consortium often dominated by bifidobacteria. Accordingly, the complete genome sequence of Bifidobacterium longum subsp. infantis ATCC15697 reflects a competitive nutrient-utilization strategy targeting milk-borne molecules which lack a nutritive value to the neonate. Several chromosomal loci reflect potential adaptation to the infant host including a 43 kbp cluster encoding catabolic genes, extracellular solute binding proteins and permeases predicted to be active on milk oligosaccharides. An examination of in vivo metabolism has detected the hallmarks of milk oligosaccharide utilization via the central fermentative pathway using metabolomic and proteomic approaches. Finally, conservation of gene clusters in multiple isolates corroborates the genomic mechanism underlying milk utilization for this infant-associated phylotype.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Low diversity of the gut microbiota in infants with atopic eczema.

            It is debated whether a low total diversity of the gut microbiota in early childhood is more important than an altered prevalence of particular bacterial species for the increasing incidence of allergic disease. The advent of powerful, cultivation-free molecular methods makes it possible to characterize the total microbiome down to the genus level in large cohorts. We sought to assess microbial diversity and characterize the dominant bacteria in stool during the first year of life in relation to atopic eczema development. Microbial diversity and composition were analyzed with barcoded 16S rDNA 454-pyrosequencing in stool samples at 1 week, 1 month, and 12 months of age in 20 infants with IgE-associated eczema and 20 infants without any allergic manifestation until 2 years of age (ClinicalTrials.gov ID NCT01285830). Infants with IgE-associated eczema had a lower diversity of the total microbiota at 1 month (P = .004) and a lower diversity of the bacterial phylum Bacteroidetes and the genus Bacteroides at 1 month (P = .02 and P = .01) and the phylum Proteobacteria at 12 months of age (P = .02). The microbiota was less uniform at 1 month than at 12 months of age, with a high interindividual variability. At 12 months, when the microbiota had stabilized, Proteobacteria, comprising gram-negative organisms, were more abundant in infants without allergic manifestation (Empirical Analysis of Digital Gene Expression in R [edgeR] test: P = .008, q = 0.02). Low intestinal microbial diversity during the first month of life was associated with subsequent atopic eczema. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Commensal bacteria protect against food allergen sensitization.

              Environmentally induced alterations in the commensal microbiota have been implicated in the increasing prevalence of food allergy. We show here that sensitization to a food allergen is increased in mice that have been treated with antibiotics or are devoid of a commensal microbiota. By selectively colonizing gnotobiotic mice, we demonstrate that the allergy-protective capacity is conferred by a Clostridia-containing microbiota. Microarray analysis of intestinal epithelial cells from gnotobiotic mice revealed a previously unidentified mechanism by which Clostridia regulate innate lymphoid cell function and intestinal epithelial permeability to protect against allergen sensitization. Our findings will inform the development of novel approaches to prevent or treat food allergy based on modulating the composition of the intestinal microbiota.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pediatr
                Front Pediatr
                Front. Pediatr.
                Frontiers in Pediatrics
                Frontiers Media S.A.
                2296-2360
                07 August 2018
                2018
                : 6
                : 218
                Affiliations
                Division of Pediatric Allergy and Immunology and Center for Food Allergy, University of Rochester School of Medicine and Dentistry , Rochester, NY, United States
                Author notes

                Edited by: Daniel Munblit, I. M. Sechenov First Moscow State Medical University, Russia

                Reviewed by: Yoshinori Morita, Chiba University, Japan; Meghan B. Azad, University of Manitoba, Canada

                *Correspondence: Kirsi M. Järvinen Kirsi_jarvinen-seppo@ 123456URMC.Rochester.edu

                This article was submitted to Pediatric Immunology, a section of the journal Frontiers in Pediatrics

                Article
                10.3389/fped.2018.00218
                6090044
                30131949
                67498cf1-8d97-4aa1-90ce-f8f9e5ab4378
                Copyright © 2018 Rajani, Seppo and Järvinen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 May 2018
                : 16 July 2018
                Page count
                Figures: 1, Tables: 3, Equations: 0, References: 155, Pages: 13, Words: 11146
                Categories
                Pediatrics
                Review

                breast milk composition,breast feeding,atopic development,iga,breast milk microbiome,cytokines,human milk oligosaccharides (hmos),fatty acids

                Comments

                Comment on this article