8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Subchondral Trabecular Rod Loss and Plate Thickening in the Development of Osteoarthritis : ROD-AND-PLATE MICROSTRUCTURE CHANGES IN OSTEOARTHRITIS

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Developing effective treatment for osteoarthritis (OA), a prevalent and disabling disease, has remained a challenge, primarily because of limited understanding of its pathogenesis and late diagnosis. In the subchondral bone, rapid bone loss after traumatic injuries and bone sclerosis at the advanced stage of OA are well-recognized hallmarks of the disease. Recent studies have further demonstrated the crucial contribution of subchondral bone in the development of OA. However, the microstructural basis of these bone changes has not been examined thoroughly, and the paradox of how abnormal resorption can eventually lead to bone sclerosis remains unanswered. By applying a novel microstructural analysis technique, individual trabecula segmentation (ITS), to micro-computed tomography (μCT) images of human OA knees, we have identified a drastic loss of rod-like trabeculae and thickening of plate-like trabeculae that persisted in all regions of the tibial plateau, underneath both severely damaged and still intact cartilage. The simultaneous reduction in trabecular rods and thickening of trabecular plates provide important insights to the dynamic and paradoxical subchondral bone changes observed in OA. Furthermore, using an established guinea pig model of spontaneous OA, we discovered similar trabecular rod loss and plate thickening that preceded cartilage degradation. Thus, our study suggests that rod-and-plate microstructural changes in the subchondral trabecular bone may play an important role in the development of OA and that advanced microstructural analysis techniques such as ITS are necessary in detecting these early but subtle changes. With emerging high-resolution skeletal imaging modalities such as the high-resolution peripheral quantitative computed tomography (HR-pQCT), trabecular rod loss identified by ITS could potentially be used as a marker in assessing the progression of OA in future longitudinal studies or clinical diagnosis. © 2017 American Society for Bone and Mineral Research.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          Radiological assessment of osteo-arthrosis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osteoarthritis cartilage histopathology: grading and staging.

            Current osteoarthritis (OA) histopathology assessment methods have difficulties in their utility for early disease, as well as their reproducibility and validity. Our objective was to devise a more useful method to assess OA histopathology that would have wide application for clinical and experimental OA assessment and would become recognized as the standard method. An OARSI Working Group deliberated on principles, standards and features for an OA cartilage pathology assessment system. Using current knowledge of the pathophysiology of OA morphologic features, a proposed system was presented at OARSI 2000. Subsequently, this was widely circulated for comments amongst experts in OA pathology. An OA cartilage pathology assessment system based on six grades, which reflect depth of the lesion and four stages reflecting extent of OA over the joint surface was developed. The OARSI cartilage OA histopathology grading system appears consistent and simple to apply. Further studies are required to confirm the system's utility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bone remodelling in osteoarthritis.

              The classical view of the pathogenesis of osteoarthritis (OA) is that subchondral sclerosis is associated with, and perhaps causes, age-related joint degeneration. Recent observations have demonstrated that OA is associated with early loss of bone owing to increased bone remodelling, followed by slow turnover leading to densification of the subchondral plate and complete loss of cartilage. Subchondral densification is a late event in OA that involves only the subchondral plate and calcified cartilage; the subchondral cancellous bone beneath the subchondral plate may remain osteopenic. In experimental models, inducing subchondral sclerosis without allowing the prior stage of increased bone remodelling to occur does not lead to progressive OA. Therefore, both early-stage increased remodelling and bone loss, and the late-stage slow remodelling and subchondral densification are important components of the pathogenetic process that leads to OA. The apparent paradoxical observations that OA is associated with both increased remodelling and osteopenia, as well as decreased remodelling and sclerosis, are consistent with the spatial and temporal separation of these processes during joint degeneration. This Review provides an overview of current knowledge on OA and discusses the role of subchondral bone in the initiation and progression of OA. A hypothetical model of OA pathogenesis is proposed.
                Bookmark

                Author and article information

                Journal
                Journal of Bone and Mineral Research
                J Bone Miner Res
                Wiley
                08840431
                February 2018
                February 2018
                November 16 2017
                : 33
                : 2
                : 316-327
                Affiliations
                [1 ]Bone Bioengineering Laboratory; Department of Biomedical Engineering; Columbia University; New York NY USA
                [2 ]Department of Orthopedics and Traumatology; The University of Hong Kong; Hong Kong
                [3 ]Department of Bone and Joint Surgery; the First Affiliated Hospital of Guangxi Medical University; Nanning Guangxi China
                [4 ]Department of Orthopedic Surgery; Johns Hopkins University School of Medicine; Baltimore MD USA
                [5 ]Department of Orthopedic Surgery; New York University Langone/Hospital for Joint Diseases; New York NY USA
                [6 ]Division of Endocrinology; Department of Medicine; Columbia University; New York NY USA
                Article
                10.1002/jbmr.3313
                29044705
                675deef6-d3c8-4c61-85fd-809a8f85e10b
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article