21
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Sex and Gender in Neurodegenerative Diseases

      Submit here before September 30, 2024

      About Neurodegenerative Diseases: 3.0 Impact Factor I 4.3 CiteScore I 0.695 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Relative Eye Size in Elasmobranchs

      review-article
      ,
      Brain, Behavior and Evolution
      S. Karger AG
      Eye, Batoid, Comparative analysis, Ecology, Ray, Shark, Skate, Vision, Visual system

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Variation in relative eye size was investigated in a sample of 46 species of elasmobranch, 32 species of sharks and 14 species of batoids (skates and rays). To get a measure of eye size relative to body size, eye axial diameter was scaled with body mass using least-squares linear regression, using both raw species data, where species are treated as independent data points, and phylogenetically independent contrasts. Residual values calculated for each species, using the regression equations describing these scaling relationships, were then used as a measure of relative eye size. Relative and absolute eye size varies considerably in elasmobranchs, although sharks have significantly relatively larger eyes than batoids. The sharks with the relatively largest eyes are oceanic species; either pelagic sharks that move between the epipelagic (0–200 m) and ‘upper’ mesopelagic (200–600 m) zones, or benthic and benthopelagic species that live in the mesopelagic (200–1,000 m) and, to a lesser extent, bathypelagic (1,000–4,000 m) zones. The elasmobranchs with the relatively smallest eyes tend to be coastal, often benthic, batoids and sharks. Active benthopelagic and pelagic species, which prey on active, mobile prey also have relatively larger eyes than more sluggish, benthic elasmobranchs that feed on more sedentary prey such as benthic invertebrates. A significant positive correlation was found between absolute eye size and relative eye size, but some very large sharks, such as Carcharodon carcharias have absolutely large eyes, but have relatively small eyes in relation to body mass.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Vision in the deep sea.

          The deep sea is the largest habitat on earth. Its three great faunal environments--the twilight mesopelagic zone, the dark bathypelagic zone and the vast flat expanses of the benthic habitat--are home to a rich fauna of vertebrates and invertebrates. In the mesopelagic zone (150-1000 m), the down-welling daylight creates an extended scene that becomes increasingly dimmer and bluer with depth. The available daylight also originates increasingly from vertically above, and bioluminescent point-source flashes, well contrasted against the dim background daylight, become increasingly visible. In the bathypelagic zone below 1000 m no daylight remains, and the scene becomes entirely dominated by point-like bioluminescence. This changing nature of visual scenes with depth--from extended source to point source--has had a profound effect on the designs of deep-sea eyes, both optically and neurally, a fact that until recently was not fully appreciated. Recent measurements of the sensitivity and spatial resolution of deep-sea eyes--particularly from the camera eyes of fishes and cephalopods and the compound eyes of crustaceans--reveal that ocular designs are well matched to the nature of the visual scene at any given depth. This match between eye design and visual scene is the subject of this review. The greatest variation in eye design is found in the mesopelagic zone, where dim down-welling daylight and bio-luminescent point sources may be visible simultaneously. Some mesopelagic eyes rely on spatial and temporal summation to increase sensitivity to a dim extended scene, while others sacrifice this sensitivity to localise pinpoints of bright bioluminescence. Yet other eyes have retinal regions separately specialised for each type of light. In the bathypelagic zone, eyes generally get smaller and therefore less sensitive to point sources with increasing depth. In fishes, this insensitivity, combined with surprisingly high spatial resolution, is very well adapted to the detection and localisation of point-source bioluminescence at ecologically meaningful distances. At all depths, the eyes of animals active on and over the nutrient-rich sea floor are generally larger than the eyes of pelagic species. In fishes, the retinal ganglion cells are also frequently arranged in a horizontal visual streak, an adaptation for viewing the wide flat horizon of the sea floor, and all animals living there. These and many other aspects of light and vision in the deep sea are reviewed in support of the following conclusion: it is not only the intensity of light at different depths, but also its distribution in space, which has been a major force in the evolution of deep-sea vision.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rates of mitochondrial DNA evolution in sharks are slow compared with mammals.

            The rate of mitochondrial DNA (mtDNA) evolution has been carefully calibrated only in primates. Similarity between the primate calibration and rates estimated for other vertebrates has led to widespread assumption of a constant molecular clock in vertebrates even though this has never been rigorously tested. We report here the examination of mtDNA sequence variation for 13 species of sharks from two orders that are well represented in the fossil record to test the constancy hypothesis. Nucleotide substitution rates in the cytochrome b and cytochrome oxidase I genes in sharks are seven- to eightfold slower than in primates or ungulates. This difference in substitution rate cannot be explained by nucleotide composition bias, codon-usage bias, selection, or choice of genes sequenced, and was confirmed by comparing species recently separated by the rise of the Isthmus of Panama. Such differences in mtDNA substitution rates among taxa indicate that it is inappropriate to use a calibration for one group to estimate divergence times or demographic parameters for another group. High-resolution studies of molecular evolutionary rates require taxon-specific calibrations.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Alternative life-history styles of cartilaginous fishes in time and space

                Bookmark

                Author and article information

                Journal
                BBE
                Brain Behav Evol
                10.1159/issn.0006-8977
                Brain, Behavior and Evolution
                S. Karger AG
                0006-8977
                1421-9743
                2007
                April 2007
                21 February 2007
                : 69
                : 4
                : 266-279
                Affiliations
                School of Biomedical Sciences, Vision Touch and Hearing Research Centre, The University of Queensland, Brisbane, Australia
                Article
                100036 Brain Behav Evol 2007;69:266–279
                10.1159/000100036
                17314474
                676b5542-254b-451c-81c0-fbc510de039d
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 09 May 2006
                : 27 July 2006
                Page count
                Figures: 5, Tables: 1, References: 76, Pages: 14
                Categories
                Original Paper

                Geriatric medicine,Neurology,Cardiovascular Medicine,Neurosciences,Clinical Psychology & Psychiatry,Public health
                Ecology,Shark,Ray,Batoid,Vision,Visual system,Skate,Comparative analysis,Eye

                Comments

                Comment on this article