20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comprehensive characterization of chemotherapeutic efficacy on metastases in the established gastric neuroendocrine cancer patient derived xenograft model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The HuPrime ® human gastric neuroendocrine carcinoma derived xenograft model GA0087 was established in this study. GA0087 PDX model showed high gene expression of vascular endothelial growth factors (VEGF)-A and B, and high potential of lung metastasis. Circulating tumor cells (CTCs) with either large or small size, circulating tumor microemboli (CTM) and lung metastatic lesions were detected in GA0087 PDX mice. The number of CTC correlated to the number of metastatic nodules in lung. Both primary tumor growth and metastasis in terms of the number of dynamically monitored CTCs and metastatic nodules were effectively suppressed by Cisplatin. Diverse subtypes of CTCs in the context of sensitivity to Cisplatin were specifically identified by subtraction enrichment (SE) integrated with in situ Phenotyping of cytokeratin 18 (CK18) and Karyotyping of chromosome 8 ( in situ PK CTC by CK-iFISH). All the CK18-/diploid and majority of CK18+/diploid CTC subtypes were chemosensitive, whereas a higher percentage of CK18+/multiploid subtype of CTC were Cisplatin-insensitive. Combined histopathological examination of metastatic lesion and in situ PK CTC in a metastatic PDX (mPDX) tumor model are of particular significance, and may provide an unique and robust platform for cancer research as well as pre-clinical evaluation of therapeutic efficacy of new anti-cancer drugs.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Detection, clinical relevance and specific biological properties of disseminating tumour cells.

          Most cancer deaths are caused by haematogenous metastatic spread and subsequent growth of tumour cells at distant organs. Disseminating tumour cells present in the peripheral blood and bone marrow can now be detected and characterized at the single-cell level. These cells are highly relevant to the study of the biology of early metastatic spread and provide a diagnostic source in patients with overt metastases. Here we review the evidence that disseminating tumour cells have a variety of uses for understanding tumour biology and improving cancer treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nuclear signalling by tumour-associated antigen EpCAM.

            EpCAM was found to be overexpressed on epithelial progenitors, carcinomas and cancer-initiating cells. The role of EpCAM in proliferation, and its association with cancer is poorly explained by proposed cell adhesion functions. Here we show that regulated intramembrane proteolysis activates EpCAM as a mitogenic signal transducer in vitro and in vivo. This involves shedding of its ectodomain EpEX and nuclear translocation of its intracellular domain EpICD. Cleavage of EpCAM is sequentially catalysed by TACE and presenilin-2. Pharmacological inhibition or genetic silencing of either protease impairs growth-promoting signalling by EpCAM, which is compensated for by EpICD. Released EpICD associates with FHL2, beta-catenin and Lef-1 to form a nuclear complex that contacts DNA at Lef-1 consensus sites, induces gene transcription and is oncogenic in immunodeficient mice. In patients, EpICD was found in nuclei of colon carcinoma but not of normal tissue. Nuclear signalling of EpCAM explains how EpCAM functions in cell proliferation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition

              Background Circulating tumour cells (CTCs) have shown prognostic relevance in metastatic breast, prostate, colon and pancreatic cancer. For further development of CTCs as a biomarker, we compared the performance of different protocols for CTC detection in murine breast cancer xenograft models (MDA-MB-231, MDA-MB-468 and KPL-4). Blood samples were taken from tumour bearing animals (20 to 200 mm2) and analysed for CTCs using 1. an epithelial marker based enrichment method (AdnaTest), 2. an antibody independent technique, targeting human gene transcripts (qualitative PCR), and 3. an antibody-independent approach, targeting human DNA-sequences (quantitative PCR). Further, gene expression changes associated with epithelial-to-mesenchymal transition (EMT) were determined with an EMT-specific PCR assay. Methods We used the commercially available Adna Test, RT-PCR on human housekeeping genes and a PCR on AluJ sequences to detect CTCs in xenografts models. Phenotypic changes in CTCs were tested with the commercially available “Human Epithelial to Mesenchymal Transition RT-Profiler PCR Array”. Results Although the AdnaTest detects as few as 1 tumour cell in 1 ml of mouse blood spiking experiments, no CTCs were detectable with this approach in vivo despite visible metastasis formation. The presence of CTCs could, however, be demonstrated by PCR targeting human transcripts or DNA-sequences - without epithelial pre-enrichment. The failure of CTC detection by the AdnaTest resulted from downregulation of EpCAM, whereas mesenchymal markers like Twist and EGFR were upregulated on CTCs. Such a change in the expression profile during metastatic spread of tumour cells has already been reported and was linked to a biological program termed epithelial-mesenchymal transition (EMT). Conclusions The use of EpCAM-based enrichment techniques leads to the failure to detect CTC populations that have undergone EMT. Our findings may explain clinical results where low CTC numbers have been reported even in patients with late metastatic cancers. These results are a starting point for the identification of new markers for detection or capture of CTCs, including the mesenchymal-like subpopulations.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                20 June 2015
                30 March 2015
                : 6
                : 17
                : 15639-15651
                Affiliations
                1 Crown Bioscience, Santa Clara, California, USA
                2 Cytelligen, San Diego, California, USA
                3 State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
                Author notes
                Correspondence to: Peter Ping Lin, plin@ 123456cytelligen.com
                Henry Qixiang Li, henryli@ 123456crownbio.com
                Article
                4558176
                25909226
                6775bd41-c709-47c2-bb7a-caf3a20a81e4
                Copyright: © 2015 Jiang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 February 2015
                : 10 March 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                ctc subtypes,metastatic pdx,ifish,chemoresistance,in situ phenotyping and karyotyping

                Comments

                Comment on this article