40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recognition of prokaryotic promoters based on a novel variable-window Z-curve method

      research-article
      1 , 2 , *
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcription is the first step in gene expression, and it is the step at which most of the regulation of expression occurs. Although sequenced prokaryotic genomes provide a wealth of information, transcriptional regulatory networks are still poorly understood using the available genomic information, largely because accurate prediction of promoters is difficult. To improve promoter recognition performance, a novel variable-window Z-curve method is developed to extract general features of prokaryotic promoters. The features are used for further classification by the partial least squares technique. To verify the prediction performance, the proposed method is applied to predict promoter fragments of two representative prokaryotic model organisms ( Escherichia coli and Bacillus subtilis). Depending on the feature extraction and selection power of the proposed method, the promoter prediction accuracies are improved markedly over most existing approaches: for E. coli, the accuracies are 96.05% (σ 70 promoters, coding negative samples), 90.44% (σ 70 promoters, non-coding negative samples), 92.13% (known sigma-factor promoters, coding negative samples), 92.50% (known sigma-factor promoters, non-coding negative samples), respectively; for B. subtilis, the accuracies are 95.83% (known sigma-factor promoters, coding negative samples) and 99.09% (known sigma-factor promoters, non-coding negative samples). Additionally, being a linear technique, the computational simplicity of the proposed method makes it easy to run in a matter of minutes on ordinary personal computers or even laptops. More importantly, there is no need to optimize parameters, so it is very practical for predicting other species promoters without any prior knowledge or prior information of the statistical properties of the samples.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple sigma subunits and the partitioning of bacterial transcription space.

          Promoter recognition in eubacteria is carried out by the initiation factor sigma, which binds RNA polymerase and initiates transcription. Cells have one housekeeping factor and a variable number of alternative sigma factors that possess different promoter-recognition properties. The cell can choose from its repertoire of sigmas to alter its transcriptional program in response to stress. Recent structural information illuminates the process of initiation and also shows that the two key sigma domains are structurally conserved, even among diverse family members. We use the sigma repertoire of Escherichia coli, Bacillus subtilis, Streptomyces coelicolor, and cyanobacteria to illustrate the different strategies utilized to organize transcriptional space using multiple sigma factors.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            PLS regression methods

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The extracytoplasmic function (ECF) sigma factors.

              Bacterial sigma (sigma) factors are an essential component of RNA polymerase and determine promoter selectivity. The substitution of one sigma factor for another can redirect some or all of the RNA polymerase in a cell to activate the transcription of genes that would otherwise be silent. As a class, alternative sigma factors play key roles in coordinating gene transcription during various stress responses and during morphological development. The extracytoplasmic function (ECF) sigma factors are small regulatory proteins that are quite divergent in sequence relative to most other sigma factors. Many bacteria, particularly those with more complex genomes, contain multiple ECF sigma factors and these regulators often outnumber all other types of sigma factor combined. Examples include Bacillus subtilis (7 ECF sigma factors), Mycobacterium tuberculosis (10), Caulobacter crescentus (13), Pseudomonas aeruginosa (approximately 19), and Streptomyces coelicolor (approximately 50). The roles and mechanisms of regulation for these various ECF sigma factors are largely unknown, but significant progress has been made in selected systems. As a general trend, most ECF sigma factors are cotranscribed with one or more negative regulators. Often, these include a transmembrane protein functioning as an anti-sigma factor that binds, and inhibits, the cognate sigma factor. Upon receiving a stimulus from the environment, the sigma factor is released and can bind to RNA polymerase to stimulate transcription. In many ways, these anti-sigma:sigma pairs are analogous to the more familiar two-component regulatory systems consisting of a transmembrane histidine protein kinase and a DNA-binding response regulator. Both are mechanisms of coordinating a cytoplasmic transcriptional response to signals perceived by protein domains external to the cell membrane. Here, I review current knowledge of some of the better characterized ECF sigma factors, discuss the variety of experimental approaches that have proven productive in defining the roles of ECF sigma factors, and present some unifying themes that are beginning to emerge as more systems are studied.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                February 2012
                February 2012
                27 September 2011
                27 September 2011
                : 40
                : 3
                : 963-971
                Affiliations
                1School of Chemical Engineering and Technology and 2Institute of Life Science and Biotechnology, Tianjin University, Tianjin, 300072, China
                Author notes
                *To whom correspondence should be addressed. Tel: +86 138 201 86019; Email: ksong@ 123456tju.edu.cn
                Article
                gkr795
                10.1093/nar/gkr795
                3273801
                21954440
                678dd10f-a74a-45df-80a2-258d138b259d
                © The Author(s) 2011. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 June 2011
                : 5 September 2011
                : 11 September 2011
                Page count
                Pages: 9
                Categories
                Computational Biology

                Genetics
                Genetics

                Comments

                Comment on this article