61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Novel Strategies for Targeting Innate Immune Responses to Influenza

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We previously reported that TLR4 -/- mice are refractory to mouse-adapted A/PR/8/34 (PR8) influenza-induced lethality and that therapeutic administration of the TLR4 antagonist, Eritoran, blocked PR8-induced lethality and acute lung injury (ALI) when given starting 2 days post-infection. Herein, we extend these findings: anti-TLR4- or TLR2-specific IgG therapy also conferred significant protection of wild-type (WT) mice from lethal PR8 infection. If treatment is initiated 3 h prior to PR8 infection and continued daily for 4 days, Eritoran failed to protect WT and TLR4 -/- mice, implying that Eritoran must block a virus-induced, non-TLR4 signal that is required for protection. Mechanistically, we determined that (i) Eritoran blocks HMGB1-mediated, TLR4-dependent signaling in vitro and circulating HMGB1 in vivo, and an HMGB1 inhibitor protects against PR8; (ii) Eritoran inhibits pulmonary lung edema associated with ALI, (iii) IL-1β contributes significantly to PR8-induced lethality, as evidenced by partial protection by IL-1 receptor antagonist (IL-1Ra) therapy. Synergistic protection against PR8-induced lethality was achieved when Eritoran and the anti-viral drug, oseltamivir, were administered starting 4 days post-infection. Eritoran treatment does not prevent development of an adaptive immune response to subsequent PR8 challenge. Overall, our data support the potential of a host-targeted therapeutic approach to influenza infection.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA.

          Interferons (IFNs) are critical for protection from viral infection, but the pathways linking virus recognition to IFN induction remain poorly understood. Plasmacytoid dendritic cells produce vast amounts of IFN-alpha in response to the wild-type influenza virus. Here, we show that this requires endosomal recognition of influenza genomic RNA and signaling by means of Toll-like receptor 7 (TLR7) and MyD88. Single-stranded RNA (ssRNA) molecules of nonviral origin also induce TLR7-dependent production of inflammatory cytokines. These results identify ssRNA as a ligand for TLR7 and suggest that cells of the innate immune system sense endosomal ssRNA to detect infection by RNA viruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HMG-1 as a late mediator of endotoxin lethality in mice.

            Endotoxin, a constituent of Gram-negative bacteria, stimulates macrophages to release large quantities of tumor necrosis factor (TNF) and interleukin-1 (IL-1), which can precipitate tissue injury and lethal shock (endotoxemia). Antagonists of TNF and IL-1 have shown limited efficacy in clinical trials, possibly because these cytokines are early mediators in pathogenesis. Here a potential late mediator of lethality is identified and characterized in a mouse model. High mobility group-1 (HMG-1) protein was found to be released by cultured macrophages more than 8 hours after stimulation with endotoxin, TNF, or IL-1. Mice showed increased serum levels of HMG-1 from 8 to 32 hours after endotoxin exposure. Delayed administration of antibodies to HMG-1 attenuated endotoxin lethality in mice, and administration of HMG-1 itself was lethal. Septic patients who succumbed to infection had increased serum HMG-1 levels, suggesting that this protein warrants investigation as a therapeutic target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbiota regulates immune defense against respiratory tract influenza A virus infection.

              Although commensal bacteria are crucial in maintaining immune homeostasis of the intestine, the role of commensal bacteria in immune responses at other mucosal surfaces remains less clear. Here, we show that commensal microbiota composition critically regulates the generation of virus-specific CD4 and CD8 T cells and antibody responses following respiratory influenza virus infection. By using various antibiotic treatments, we found that neomycin-sensitive bacteria are associated with the induction of productive immune responses in the lung. Local or distal injection of Toll-like receptor (TLR) ligands could rescue the immune impairment in the antibiotic-treated mice. Intact microbiota provided signals leading to the expression of mRNA for pro-IL-1β and pro-IL-18 at steady state. Following influenza virus infection, inflammasome activation led to migration of dendritic cells (DCs) from the lung to the draining lymph node and T-cell priming. Our results reveal the importance of commensal microbiota in regulating immunity in the respiratory mucosa through the proper activation of inflammasomes.
                Bookmark

                Author and article information

                Journal
                101299742
                35518
                Mucosal Immunol
                Mucosal Immunol
                Mucosal immunology
                1933-0219
                1935-3456
                8 November 2016
                27 January 2016
                September 2016
                29 November 2016
                : 9
                : 5
                : 1173-1182
                Affiliations
                [1 ]Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD, USA
                [2 ]Sigmovir Biosystems, Inc., Rockville, MD, USA
                [3 ]Dept. of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
                [4 ]Pathology Research, University of Maryland, Baltimore, Baltimore, MD, USA
                [5 ]Infectious Diseases Service, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
                [6 ]Dept. Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
                [7 ]Dept. of Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY, USA
                [8 ]School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
                [9 ]Mucosal Immunology and Biology Research Center, MGH for Children, Boston, MA, USA
                [10 ]Division of Infectious diseases, Univ. of Colorado Denver, Aurora, CO, USA
                [11 ]Eisai, Inc., Andover, MA, USA
                Author notes
                [# ]Corresponding author: Stefanie N. Vogel, Ph.D., Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, 685 W. Baltimore St., Rm. 380, Baltimore, MD 21201 USA svogel@ 123456som.umaryland.edu
                Article
                NIHMS746175
                10.1038/mi.2015.141
                5125448
                26813341
                67901f77-1cc4-4978-a4af-12f5ccd82e2c

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Immunology
                Immunology

                Comments

                Comment on this article