13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tpz1-Ccq1 and Tpz1-Poz1 Interactions within Fission Yeast Shelterin Modulate Ccq1 Thr93 Phosphorylation and Telomerase Recruitment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In both fission yeast and humans, the shelterin complex plays central roles in regulation of telomerase recruitment, protection of telomeres against DNA damage response factors, and formation of heterochromatin at telomeres. While shelterin is essential for limiting activation of the DNA damage checkpoint kinases ATR and ATM at telomeres, these kinases are required for stable maintenance of telomeres. In fission yeast, Rad3 ATR and Tel1 ATM kinases are redundantly required for telomerase recruitment, since Rad3 ATR/Tel1 ATM-dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 promotes interaction between Ccq1 and the telomerase subunit Est1. However, it remained unclear how protein-protein interactions within the shelterin complex (consisting of Taz1, Rap1, Poz1, Tpz1, Pot1 and Ccq1) contribute to the regulation of Ccq1 Thr93 phosphorylation and telomerase recruitment. In this study, we identify domains and amino acid residues that are critical for mediating Tpz1-Ccq1 and Tpz1-Poz1 interaction within the fission yeast shelterin complex. Using separation of function Tpz1 mutants that maintain Tpz1-Pot1 interaction but specifically disrupt either Tpz1-Ccq1 or Tpz1-Poz1 interaction, we then establish that Tpz1-Ccq1 interaction promotes Ccq1 Thr93 phosphorylation, telomerase recruitment, checkpoint inhibition and telomeric heterochromatin formation. Furthermore, we demonstrate that Tpz1-Poz1 interaction promotes telomere association of Poz1, and loss of Poz1 from telomeres leads to increases in Ccq1 Thr93 phosphorylation and telomerase recruitment, and telomeric heterochromatin formation defect. In addition, our studies establish that Tpz1-Poz1 and Tpz1-Ccq1 interactions redundantly fulfill the essential telomere protection function of the shelterin complex, since simultaneous loss of both interactions caused immediate loss of cell viability for the majority of cells and generation of survivors with circular chromosomes. Based on these findings, we suggest that the negative regulatory function of Tpz1-Poz1 interaction works upstream of Rad3 ATR kinase, while Tpz1-Ccq1 interaction works downstream of Rad3 ATR kinase to facilitate Ccq1 Thr93 phosphorylation and telomerase recruitment.

          Author Summary

          Proper maintenance of telomeres is essential for maintaining genomic stability, and genomic instability caused by dysfunctional telomeres could lead to accumulation of mutations that may drive tumor formation. Telomere dysfunction has also been linked to premature aging caused by depletion of stem cells. Therefore, it is important to understand how cells ensure proper maintenance of telomeres. Mammalian cells and fission yeast cells utilize an evolutionarily conserved multi-subunit telomere protection complex called shelterin to ensure protection against telomere fusions by DNA repair factors and cell cycle arrest by DNA damage checkpoint kinases. However, previous studies have not yet fully established how protein-protein interactions within the shelterin complex contribute to the regulation of DNA damage checkpoint signaling and telomerase recruitment. By utilizing separation of function mutations that specifically disrupt either Tpz1-Ccq1 or Tpz1-Poz1 interaction within the fission yeast shelterin, we establish that Tpz1-Ccq1 interaction is essential for phosphorylation of Ccq1 by the DNA damage checkpoint kinases Rad3 ATR and Tel1 ATM that is needed for telomerase recruitment to telomeres, while Tpz1-Poz1 interaction prevents Ccq1 phosphorylation by promoting Poz1 association with telomeres. These findings thus establish for the first time how protein-protein interactions within the shelterin complex modulate checkpoint kinase-dependent phosphorylation essential for telomerase recruitment.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          The telomere syndromes.

          There has been mounting evidence of a causal role for telomere dysfunction in a number of degenerative disorders. Their manifestations encompass common disease states such as idiopathic pulmonary fibrosis and bone marrow failure. Although these disorders seem to be clinically diverse, collectively they comprise a single syndrome spectrum defined by the short telomere defect. Here we review the manifestations and unique genetics of telomere syndromes. We also discuss their underlying molecular mechanisms and significance for understanding common age-related disease processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative functional genomics of the fission yeasts.

            The fission yeast clade--comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus--occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An alternative pathway for yeast telomere maintenance rescues est1- senescence.

              Yeast cells lacking a functional EST1 gene show progressive shortening of the terminal G1-3T telomeric repeats and a parallel increase in the frequency of cell death. Although the majority of the cells in an est1- culture die, a minor subpopulation survives the potentially lethal consequences of the est1 mutation. We show that these est1- survivors arise as a result of the amplification and acquisition of subtelomeric elements (and their deletion derivatives) by a large number of telomeres. Hence, even when the primary pathway for telomere replication is defective, an alternative backup pathway can restore telomere function and keep the cell alive.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2014
                16 October 2014
                : 10
                : 10
                : e1004708
                Affiliations
                [1]Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
                National Cancer Institute, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JLH YTC BAM TMN. Performed the experiments: JLH YTC BAM. Analyzed the data: JLH YTC BAM TMN. Contributed reagents/materials/analysis tools: JLH YTC BAM TMN. Wrote the paper: JLH BAM TMN.

                Article
                PGENETICS-D-14-00659
                10.1371/journal.pgen.1004708
                4199508
                25330395
                67a14a6b-92e3-4ca6-9771-3cd43353f047
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 March 2014
                : 26 August 2014
                Page count
                Pages: 16
                Funding
                This research was supported by NIH grant GM078253 to TMN. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Genetics
                Molecular Biology
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All data are included within the manuscript and Supporting Information files.

                Genetics
                Genetics

                Comments

                Comment on this article