18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantitative imaging strategies pave the way for testable biological concepts

      research-article
      1 ,
      BMC Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In developmental biology, the accumulation of qualitative phenotypic descriptions has fueled the need for testable parsimonious hypotheses, giving a fresh impetus to quantitative strategies. As an illustration, thanks to the precise quantification of cell growth and microtubule behavior in a study published in BMC Plant Biology, Zhang and collaborators have identified sequential phases of polarized and isotropic growth in puzzle-shaped leaf epidermal cells, thus providing new clues to explore how growth coordination occurs in this tissue.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy.

          A long-standing goal of biology is to map the behavior of all cells during vertebrate embryogenesis. We developed digital scanned laser light sheet fluorescence microscopy and recorded nuclei localization and movement in entire wild-type and mutant zebrafish embryos over the first 24 hours of development. Multiview in vivo imaging at 1.5 billion voxels per minute provides "digital embryos," that is, comprehensive databases of cell positions, divisions, and migratory tracks. Our analysis of global cell division patterns reveals a maternally defined initial morphodynamic symmetry break, which identifies the embryonic body axis. We further derive a model of germ layer formation and show that the mesendoderm forms from one-third of the embryo's cells in a single event. Our digital embryos, with 55 million nucleus entries, are provided as a resource.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis.

            Coordinating growth and communication between adjacent cells is a critical yet poorly understood aspect of tissue development and organ morphogenesis. We report a Rho GTPase signaling network underlying the jigsaw puzzle appearance of Arabidopsis leaf pavement cells, in which localized outgrowth in one cell is coordinated with localized inhibition of outgrowth of the adjacent cell to form interdigitating lobes and indentations. Locally activated ROP2, a Rho-related GTPase from plants, activates RIC4 to promote the assembly of cortical actin microfilaments required for localized outgrowth. Meanwhile, ROP2 inactivates another target RIC1, whose activity promotes well-ordered cortical microtubules. RIC1-dependent microtubule organization not only locally inhibits outgrowth but in turn suppresses ROP2 activation in the indentation zones. Thus, outgrowth-promoting ROP2 and outgrowth-inhibiting RIC1 pathways antagonize each other. We propose that the counteractivity of these two pathways demarcates outgrowing and indenting cortical domains, coordinating a process that gives rise to interdigitations between adjacent pavement cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution.

              Quantitative information on growing organs is required to better understand morphogenesis in both plants and animals. However, detailed analyses of growth patterns at cellular resolution have remained elusive. We developed an approach, multiangle image acquisition, three-dimensional reconstruction and cell segmentation-automated lineage tracking (MARS-ALT), in which we imaged whole organs from multiple angles, computationally merged and segmented these images to provide accurate cell identification in three dimensions and automatically tracked cell lineages through multiple rounds of cell division during development. Using these methods, we quantitatively analyzed Arabidopsis thaliana flower development at cell resolution, which revealed differential growth patterns of key regions during early stages of floral morphogenesis. Lastly, using rice roots, we demonstrated that this approach is both generic and scalable.
                Bookmark

                Author and article information

                Journal
                BMC Biol
                BMC Biology
                BioMed Central
                1741-7007
                2011
                25 February 2011
                : 9
                : 10
                Affiliations
                [1 ]Laboratoire Reproduction et Développement des Plantes/Laboratoire Joliot Curie, INRA, CNRS, ENS, Université de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
                Article
                1741-7007-9-10
                10.1186/1741-7007-9-10
                3045392
                21352557
                67b3d4ae-9a7d-4464-b507-2b79740d2808
                Copyright ©2011 Hamant; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 February 2011
                : 22 February 2011
                Categories
                Commentary

                Life sciences
                Life sciences

                Comments

                Comment on this article