+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Involvement of Membrane Blebbing in Immunological Disorders and Cancer

      a , b , *
      Medical Principles and Practice
      S. Karger AG
      Bleb, Actin, Motility, Invasion, Endocrine resistance, Breast cancer

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Cellular blebbing is a unique form of dynamic protrusion emanating from the plasma membrane which can be either apoptotic or nonapoptotic in nature. Blebs have been observed in a wide variety of cell types and in response to multiple mechanical and chemical stimuli. They have been linked to various physiological and pathological processes including tumor motility and invasion, as well as to various immunological disorders. They can form and retract extremely rapidly in seconds or minutes, or slowly over hours or days. This review focuses on recent evidence regarding the role of blebbing in cell locomotion with particular emphasis on its role in tumor metastasis, indicating the role of specific causative molecules. The phenomenon of blebbing has been observed in endocrine-resistant breast cancer cells in response to brief exposure to extracellular alkaline pH, which leads to enhanced invasive capacity. Genetic or pharmacological targeting of cellular blebs could serve as a potential therapeutic option to control tumor metastasis.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular motility driven by assembly and disassembly of actin filaments.

          Motile cells extend a leading edge by assembling a branched network of actin filaments that produces physical force as the polymers grow beneath the plasma membrane. A core set of proteins including actin, Arp2/3 complex, profilin, capping protein, and ADF/cofilin can reconstitute the process in vitro, and mathematical models of the constituent reactions predict the rate of motion. Signaling pathways converging on WASp/Scar proteins regulate the activity of Arp2/3 complex, which mediates the initiation of new filaments as branches on preexisting filaments. After a brief spurt of growth, capping protein terminates the elongation of the filaments. After filaments have aged by hydrolysis of their bound ATP and dissociation of the gamma phosphate, ADF/cofilin proteins promote debranching and depolymerization. Profilin catalyzes the exchange of ADP for ATP, refilling the pool of ATP-actin monomers bound to profilin, ready for elongation.
            • Record: found
            • Abstract: found
            • Article: not found


            Amoebiasis is the second leading cause of death from parasitic disease worldwide. The causative protozoan parasite, Entamoeba histolytica, is a potent pathogen. Secreting proteinases that dissolve host tissues, killing host cells on contact, and engulfing red blood cells, E histolytica trophozoites invade the intestinal mucosa, causing amoebic colitis. In some cases amoebas breach the mucosal barrier and travel through the portal circulation to the liver, where they cause abscesses consisting of a few E histolytica trophozoites surrounding dead and dying hepatocytes and liquefied cellular debris. Amoebic liver abscesses grow inexorably and, at one time, were almost always fatal, but now even large abscesses can be cured by one dose of antibiotic. Evidence that what we thought was a single species based on morphology is, in fact, two genetically distinct species--now termed Entamoeba histolytica (the pathogen) and Entamoeba dispar (a commensal)--has turned conventional wisdom about the epidemiology and diagnosis of amoebiasis upside down. New models of disease have linked E histolytica induction of intestinal inflammation and hepatocyte programmed cell death to the pathogenesis of amoebic colitis and amoebic liver abscess.
              • Record: found
              • Abstract: found
              • Article: not found

              Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption.

              Aquaporin-1 (AQP1) is a water channel protein expressed widely in vascular endothelia, where it increases cell membrane water permeability. The role of AQP1 in endothelial cell function is unknown. Here we show remarkably impaired tumour growth in AQP1-null mice after subcutaneous or intracranial tumour cell implantation, with reduced tumour vascularity and extensive necrosis. A new mechanism for the impaired angiogenesis was established from cell culture studies. Although adhesion and proliferation were similar in primary cultures of aortic endothelia from wild-type and from AQP1-null mice, cell migration was greatly impaired in AQP1-deficient cells, with abnormal vessel formation in vitro. Stable transfection of non-endothelial cells with AQP1 or with a structurally different water-selective transporter (AQP4) accelerated cell migration and wound healing in vitro. Motile AQP1-expressing cells had prominent membrane ruffles at the leading edge with polarization of AQP1 protein to lamellipodia, where rapid water fluxes occur. Our findings support a fundamental role of water channels in cell migration, which is central to diverse biological phenomena including angiogenesis, wound healing, tumour spread and organ regeneration.

                Author and article information

                Med Princ Pract
                Med Princ Pract
                Medical Principles and Practice
                S. Karger AG (Allschwilerstrasse 10, P.O. Box · Postfach · Case postale, CH–4009, Basel, Switzerland · Schweiz · Suisse, Phone: +41 61 306 11 11, Fax: +41 61 306 12 34, karger@karger.ch )
                July 2016
                26 November 2015
                26 November 2015
                : 25
                : Suppl 2
                : 18-27
                [1] aDepartment of Pharmacology and Therapeutics, Safat, Kuwait
                [2] bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
                Author notes
                *Yunus A. Luqmani, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail Yunus@ 123456hsc.edu.kw
                Copyright © 2015 by S. Karger AG, Basel

                This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC) (www.karger.com/OA-license), applicable to the online version of the article only. Distribution permitted for non-commercial purposes only.

                : 31 May 2015
                : 20 October 2015
                Page count
                Figures: 1, References: 147, Pages: 10

                bleb,actin,motility,invasion,endocrine resistance,breast cancer
                bleb, actin, motility, invasion, endocrine resistance, breast cancer


                Comment on this article