Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

The Detection of Novelty Relies on Dopaminergic Signaling: Evidence from Apomorphine's Impact on the Novelty N2

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Despite much research, it remains unclear if dopamine is directly involved in novelty detection or plays a role in orchestrating the subsequent cognitive response. This ambiguity stems in part from a reliance on experimental designs where novelty is manipulated and dopaminergic activity is subsequently observed. Here we adopt the alternative approach: we manipulate dopamine activity using apomorphine (D1/D2 agonist) and measure the change in neurological indices of novelty processing. In separate drug and placebo sessions, participants completed a von Restorff task. Apomorphine speeded and potentiated the novelty-elicited N2, an Event-Related Potential (ERP) component thought to index early aspects of novelty detection, and caused novel-font words to be better recalled. Apomorphine also decreased the amplitude of the novelty-P3a. An increase in D1/D2 receptor activation thus appears to potentiate neural sensitivity to novel stimuli, causing this content to be better encoded.

      Related collections

      Most cited references 49

      • Record: found
      • Abstract: found
      • Article: not found

      EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.

      We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), independent component analysis (ICA) and time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical methods based on data resampling. EEGLAB functions are organized into three layers. Top-layer functions allow users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middle-layer functions allow users to customize data processing using command history and interactive 'pop' functions. Experienced MATLAB users can use EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. Extensive function help and tutorial information are included. A 'plug-in' facility allows easy incorporation of new EEG modules into the main menu. EEGLAB is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU public license for noncommercial use and open source development, together with sample data, user tutorial and extensive documentation.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Updating P300: an integrative theory of P3a and P3b.

         John Polich (2007)
        The empirical and theoretical development of the P300 event-related brain potential (ERP) is reviewed by considering factors that contribute to its amplitude, latency, and general characteristics. The neuropsychological origins of the P3a and P3b subcomponents are detailed, and how target/standard discrimination difficulty modulates scalp topography is discussed. The neural loci of P3a and P3b generation are outlined, and a cognitive model is proffered: P3a originates from stimulus-driven frontal attention mechanisms during task processing, whereas P3b originates from temporal-parietal activity associated with attention and appears related to subsequent memory processing. Neurotransmitter actions associating P3a to frontal/dopaminergic and P3b to parietal/norepinephrine pathways are highlighted. Neuroinhibition is suggested as an overarching theoretical mechanism for P300, which is elicited when stimulus detection engages memory operations.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Influence of cognitive control and mismatch on the N2 component of the ERP: a review.

          Recent years have seen an explosion of research on the N2 component of the event-related potential, a negative wave peaking between 200 and 350 ms after stimulus onset. This research has focused on the influence of "cognitive control," a concept that covers strategic monitoring and control of motor responses. However, rich research traditions focus on attention and novelty or mismatch as determinants of N2 amplitude. We focus on paradigms that elicit N2 components with an anterior scalp distribution, namely, cognitive control, novelty, and sequential matching, and argue that the anterior N2 should be divided into separate control- and mismatch-related subcomponents. We also argue that the oddball N2 belongs in the family of attention-related N2 components that, in the visual modality, have a posterior scalp distribution. We focus on the visual modality for which components with frontocentral and more posterior scalp distributions can be readily distinguished.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Department of Cognitive Psychology, VU University Amsterdam, The Netherlands
            [2 ]Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
            [3 ]Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, The Netherlands
            University G. D'Annunzio, Italy
            Author notes

            Competing Interests: The authors have declared that no competing interests exist.

            Conceived and designed the experiments: MM. Performed the experiments: MRG. Analyzed the data: MRG. Wrote the paper: MM MRG CMH. Medical advice: TvA. Pharmacological advice: PB.

            Contributors
            Role: Editor
            Journal
            PLoS One
            PLoS ONE
            plos
            plosone
            PLoS ONE
            Public Library of Science (San Francisco, USA )
            1932-6203
            2013
            20 June 2013
            : 8
            : 6
            23840482
            3688774
            PONE-D-13-12004
            10.1371/journal.pone.0066469
            (Editor)

            This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

            Counts
            Pages: 8
            Funding
            MM is financially supported by the VIDI grant 452-09-007 from NWO. CH is financially supported by the VENI grant 016-125-283 from NWO. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
            Categories
            Research Article
            Biology
            Biochemistry
            Neurochemistry
            Neurochemicals
            Dopamine
            Neuroscience
            Neurochemistry
            Neurochemicals
            Dopamine
            Medicine
            Mental Health
            Psychology
            Cognitive Psychology
            Experimental Psychology
            Social and Behavioral Sciences
            Psychology
            Cognitive Psychology
            Learning
            Memory
            Experimental Psychology
            Neuropsychology

            Uncategorized

            Comments

            Comment on this article