6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Geochemistry and microbial ecology in alkaline hot springs of Ambitle Island, Papua New Guinea

      ,
      Extremophiles
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Archaea in coastal marine environments.

          E Delong (1992)
          Archaea (archaebacteria) are a phenotypically diverse group of microorganisms that share a common evolutionary history. There are four general phenotypic groups of archaea: the methanogens, the extreme halophiles, the sulfate-reducing archaea, and the extreme thermophiles. In the marine environment, archaeal habitats are generally limited to shallow or deep-sea anaerobic sediments (free-living and endosymbiotic methanogens), hot springs or deep-sea hydrothermal vents (methanogens, sulfate reducers, and extreme thermophiles), and highly saline land-locked seas (halophiles). This report provides evidence for the widespread occurrence of unusual archaea in oxygenated coastal surface waters of North America. Quantitative estimates indicated that up to 2% of the total ribosomal RNA extracted from coastal bacterioplankton assemblages was archaeal. Archaeal small-subunit ribosomal RNA-encoding DNAs (rDNAs) were cloned from mixed bacterioplankton populations collected at geographically distant sampling sites. Phylogenetic and nucleotide signature analyses of these cloned rDNAs revealed the presence of two lineages of archaea, each sharing the diagnostic signatures and structural features previously established for the domain Archaea. Both of these lineages were found in bacterioplankton populations collected off the east and west coasts of North America. The abundance and distribution of these archaea in oxic coastal surface waters suggests that these microorganisms represent undescribed physiological types of archaea, which reside and compete with aerobic, mesophilic eubacteria in marine coastal environments.
            • Record: found
            • Abstract: not found
            • Article: not found

            A new statistical approach for assessing similarity of species composition with incidence and abundance data

              • Record: found
              • Abstract: found
              • Article: not found

              Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota.

              The archaeal domain is currently divided into two major phyla, the Euryarchaeota and Crenarchaeota. During the past few years, diverse groups of uncultivated mesophilic archaea have been discovered and affiliated with the Crenarchaeota. It was recently recognized that these archaea have a major role in geochemical cycles. Based on the first genome sequence of a crenarchaeote, Cenarchaeum symbiosum, we show that these mesophilic archaea are different from hyperthermophilic Crenarchaeota and branch deeper than was previously assumed. Our results indicate that C. symbiosum and its relatives are not Crenarchaeota, but should be considered as a third archaeal phylum, which we propose to name Thaumarchaeota (from the Greek 'thaumas', meaning wonder).

                Author and article information

                Journal
                Extremophiles
                Extremophiles
                Springer Nature
                1431-0651
                1433-4909
                July 2014
                June 6 2014
                July 2014
                : 18
                : 4
                : 763-778
                Article
                10.1007/s00792-014-0657-6
                67d5c45b-b418-45c3-904b-69e791133d0a
                © 2014
                History

                Comments

                Comment on this article

                Related Documents Log