23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Increased Myocardial Rab GTPase Expression : A Consequence and Cause of Cardiomyopathy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Ras-like Rab GTPases regulate vesicle transport in endocytosis and exocytosis. We found that cardiac Rabs1, 4, and 6 are upregulated in a dilated cardiomyopathy model overexpressing beta(2)-adrenergic receptors. To determine if increased Rab GTPase expression can contribute to cardiomyopathy, we transgenically overexpressed in mouse hearts prototypical Rab1a, the small G protein that regulates vesicle transport from endoplasmic reticulum to and through Golgi. In multiple independent mouse lines, Rab1a overexpression caused cardiac hypertrophy that progressed in a time- and transgene dose-dependent manner to heart failure. Isolated cardiac myocytes were hypertrophied and exhibited contractile depression with impaired calcium reuptake. Ultrastructural analysis revealed enlarged Golgi stacks and increased transitional vesicles in ventricular myocytes, with increased secretory atrial natriuretic peptide granules and degenerative myelin figures in atrial myocytes; immunogold studies localized Rab1a to these abnormal vesicular structures. A survey of hypertrophy signaling molecules revealed increased protein kinase C (PKC) alpha and delta, and confocal microscopy showed abnormal subcellular distribution of PKCalpha in Rab1a transgenics. These results indicate that increased expression of Rab1 GTPase in myocardium distorts subcellular localization of proteins and is sufficient to cause cardiac hypertrophy and failure.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway.

          rab4 is a ras-like GTP-binding protein that associates with early endosomes in a cell cycle-dependent fashion. To determine its role during endocytosis, we generated stable cell lines that overexpressed mutant or wild-type rab4. By measuring endocytosis, transport to lysosomes, and recycling, we found that overexpression of wild-type rab4 had differential effects on the endocytic pathway. Although initial rates of internalization and degradation were not inhibited, the transfectants exhibited a 3-fold decrease in fluid phase endocytosis as well as an alteration in transferrin receptor (Tfn-R) recycling. Wild-type rab4 caused a redistribution of Tfn-R's from endosomes to the plasma membrane. It also blocked iron discharge by preventing the delivery of Tfn to acidic early endosomes, instead causing Tfn accumulation in a population of nonacidic vesicles and tubules. rab4 thus appears to control the function or formation of endosomes involved in recycling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytoplasmic signaling pathways that regulate cardiac hypertrophy.

            This review discusses the rapidly progressing field of cardiomyocyte signal transduction and the regulation of the hypertrophic response. When stimulated by a wide array of neurohumoral factors or when faced with an increase in ventricular-wall tension, individual cardiomyocytes undergo hypertrophic growth as an adaptive response. However, sustained cardiac hypertrophy is a leading predictor of future heart failure. A growing number of intracellular signaling pathways have been characterized as important transducers of the hypertrophic response, including specific G protein isoforms, low-molecular-weight GTPases (Ras, RhoA, and Rac), mitogen-activated protein kinase cascades, protein kinase C, calcineurin, gp130-signal transducer and activator of transcription, insulin-like growth factor I receptor pathway, fibroblast growth factor and transforming growth factor beta receptor pathways, and many others. Each of these signaling pathways has been implicated as a hypertrophic transducer, which collectively suggests an emerging paradigm whereby multiple pathways operate in concert to orchestrate a hypertrophic response
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex

              We have examined the role of ras-related rab proteins in transport from the ER to the Golgi complex in vivo using a vaccinia recombinant T7 RNA polymerase virus to express site-directed rab mutants. These mutations are within highly conserved domains involved in guanine nucleotide binding and hydrolysis found in ras and all members of the ras superfamily. Substitutions in the GTP-binding domains of rab1a and rab1b (equivalent to the ras 17N and 116I mutants) resulted in proteins which were potent trans dominant inhibitors of vesicular stomatitis virus glycoprotein (VSV-G protein) transport between the ER and cis Golgi complex. Immunofluorescence analysis indicated that expression of rab1b121I prevented delivery of VSV-G protein to the Golgi stack, which resulted in VSV-G protein accumulation in pre-Golgi punctate structures. Mutants in guanine nucleotide exchange or hydrolysis of the rab2 protein were also strong trans dominant transport inhibitors. Analogous mutations in rab3a, rab5, rab6, and H-ras did not inhibit processing of VSV-G to the complex, sialic acid containing form diagnostic of transport to the trans Golgi compartment. We suggest that at least three members of the rab family (rab1a, rab1b, and rab2) use GTP hydrolysis to regulate components of the transport machinery involved in vesicle traffic between early compartments of the secretory pathway.
                Bookmark

                Author and article information

                Journal
                Circulation Research
                Circulation Research
                Ovid Technologies (Wolters Kluwer Health)
                0009-7330
                1524-4571
                December 07 2001
                December 07 2001
                : 89
                : 12
                : 1130-1137
                Affiliations
                [1 ]From the Departments of Medicine (G.W., M.G.Y., T.J.B., H.S.H., T.T., A.Y., R.A.L., G.W.D.) and Physiology (G.M.H.), University of Cincinnati Medical Center; and Division of Molecular Cardiovascular Biology (H.O., X.W., J.R.), Children’s Hospital Research Foundation, Cincinnati, Ohio.
                Article
                10.1161/hh2401.100427
                11739277
                67df86d4-f271-4eec-b50b-18031217a3fa
                © 2001
                History

                Comments

                Comment on this article