77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      DNA methylation and methyl-CpG binding proteins: developmental requirements and function

      review-article
      ,
      Chromosoma
      Springer-Verlag

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA methylation is a major epigenetic modification in the genomes of higher eukaryotes. In vertebrates, DNA methylation occurs predominantly on the CpG dinucleotide, and approximately 60% to 90% of these dinucleotides are modified. Distinct DNA methylation patterns, which can vary between different tissues and developmental stages, exist on specific loci. Sites of DNA methylation are occupied by various proteins, including methyl-CpG binding domain (MBD) proteins which recruit the enzymatic machinery to establish silent chromatin. Mutations in the MBD family member MeCP2 are the cause of Rett syndrome, a severe neurodevelopmental disorder, whereas other MBDs are known to bind sites of hypermethylation in human cancer cell lines. Here, we review the advances in our understanding of the function of DNA methylation, DNA methyltransferases, and methyl-CpG binding proteins in vertebrate embryonic development. MBDs function in transcriptional repression and long-range interactions in chromatin and also appear to play a role in genomic stability, neural signaling, and transcriptional activation. DNA methylation makes an essential and versatile epigenetic contribution to genome integrity and function.

          Related collections

          Most cited references184

          • Record: found
          • Abstract: found
          • Article: not found

          Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.

          Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells.

            Cytosine methylation is required for mammalian development and is often perturbed in human cancer. To determine how this epigenetic modification is distributed in the genomes of primary and transformed cells, we used an immunocapturing approach followed by DNA microarray analysis to generate methylation profiles of all human chromosomes at 80-kb resolution and for a large set of CpG islands. In primary cells we identified broad genomic regions of differential methylation with higher levels in gene-rich neighborhoods. Female and male cells had indistinguishable profiles for autosomes but differences on the X chromosome. The inactive X chromosome (Xi) was hypermethylated at only a subset of gene-rich regions and, unexpectedly, overall hypomethylated relative to its active counterpart. The chromosomal methylation profile of transformed cells was similar to that of primary cells. Nevertheless, we detected large genomic segments with hypomethylation in the transformed cell residing in gene-poor areas. Furthermore, analysis of 6,000 CpG islands showed that only a small set of promoters was methylated differentially, suggesting that aberrant methylation of CpG island promoters in malignancy might be less frequent than previously hypothesized.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.

              CpG methylation in vertebrates correlates with alterations in chromatin structure and gene silencing. Differences in DNA-methylation status are associated with imprinting phenomena and carcinogenesis. In Xenopus laevis oocytes, DNA methylation dominantly silences transcription through the assembly of a repressive nucleosomal array. Methylated DNA assembled into chromatin binds the transcriptional repressor MeCP2 which cofractionates with Sin3 and histone deacetylase. Silencing conferred by MeCP2 and methylated DNA can be relieved by inhibition of histone deacetylase, facilitating the remodelling of chromatin and transcriptional activation. These results establish a direct causal relationship between DNA methylation-dependent transcriptional silencing and the modification of chromatin.
                Bookmark

                Author and article information

                Contributors
                g.veenstra@ncmls.ru.nl
                Journal
                Chromosoma
                Chromosoma
                Springer-Verlag (Berlin/Heidelberg )
                0009-5915
                1432-0886
                9 June 2009
                October 2009
                : 118
                : 5
                : 549-565
                Affiliations
                Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
                Author notes

                Communicated by E. Nigg

                Article
                221
                10.1007/s00412-009-0221-9
                2729420
                19506892
                67e666a6-2555-4fff-8d58-5f412264bc0d
                © The Author(s) 2009
                History
                : 7 April 2009
                : 19 May 2009
                : 27 May 2009
                Categories
                Review
                Custom metadata
                © Springer-Verlag 2009

                Genetics
                Genetics

                Comments

                Comment on this article