12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intravitreal pro-inflammatory cytokines in non-obese diabetic mice: Modelling signs of diabetic retinopathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetic retinopathy is a vascular disease of the retina characterised by hyperglycaemic and inflammatory processes. Most animal models of diabetic retinopathy are hyperglycaemia-only models that do not account for the significant role that inflammation plays in the development of the disease. In the present study, we present data on the establishment of a new animal model of diabetic retinopathy that incorporates both hyperglycaemia and inflammation. We hypothesized that inflammation may trigger and worsen the development of diabetic retinopathy in a hyperglycaemic environment. Pro-inflammatory cytokines, IL-1β and TNF-α, were therefore injected into the vitreous of non-obese diabetic (NOD) mice. CD1 mice were used as same genetic background controls. Fundus and optical coherence tomography images were obtained before (day 0) as well as on days 2 and 7 after intravitreal cytokine injection to assess vessel dilation and beading, retinal and vitreous hyper-reflective foci and retinal thickness. Astrogliosis and microgliosis were assessed using immunohistochemistry. Results showed that intravitreal cytokines induced vessel dilation, beading, severe vitreous hyper-reflective foci, retinal oedema, increased astrogliosis and microglia upregulation in diabetic NOD mice. Intravitreal injection of inflammatory cytokines into the eyes of diabetic mice therefore appears to provide a new model of diabetic retinopathy that could be used for the study of disease progression and treatment strategies.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future.

          Glucose metabolism is normally regulated by a feedback loop including islet β cells and insulin-sensitive tissues, in which tissue sensitivity to insulin affects magnitude of β-cell response. If insulin resistance is present, β cells maintain normal glucose tolerance by increasing insulin output. Only when β cells cannot release sufficient insulin in the presence of insulin resistance do glucose concentrations rise. Although β-cell dysfunction has a clear genetic component, environmental changes play an essential part. Modern research approaches have helped to establish the important role that hexoses, aminoacids, and fatty acids have in insulin resistance and β-cell dysfunction, and the potential role of changes in the microbiome. Several new approaches for treatment have been developed, but more effective therapies to slow progressive loss of β-cell function are needed. Recent findings from clinical trials provide important information about methods to prevent and treat type 2 diabetes and some of the adverse effects of these interventions. However, additional long-term studies of drugs and bariatric surgery are needed to identify new ways to prevent and treat type 2 diabetes and thereby reduce the harmful effects of this disease. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions.

            Breakdown of the inner endothelial blood-retinal barrier (BRB), as occurs in diabetic retinopathy, age-related macular degeneration, retinal vein occlusions, uveitis and other chronic retinal diseases, results in vasogenic edema and neural tissue damage, causing loss of vision. The central mechanism of altered BRB function is a change in the permeability characteristics of retinal endothelial cells caused by elevated levels of growth factors, cytokines, advanced glycation end products, inflammation, hyperglycemia and loss of pericytes. Subsequently, paracellular but also transcellular transport across the retinal vascular wall increases via opening of endothelial intercellular junctions and qualitative and quantitative changes in endothelial caveolar transcellular transport, respectively. Functional changes in pericytes and astrocytes, as well as structural changes in the composition of the endothelial glycocalyx and the basal lamina around BRB endothelium further facilitate BRB leakage. As Starling's rules apply, active transcellular transport of plasma proteins by the BRB endothelial cells causing increased interstitial osmotic pressure is probably the main factor in the formation of macular edema. The understanding of the complex cellular and molecular processes involved in BRB leakage has grown rapidly in recent years. Although appropriate animal models for human conditions like diabetic macular edema are lacking, these insights have provided tools for rational design of drugs aimed at restoring the BRB as well as for design of effective transport of drugs across the BRB, to treat the chronic retinal diseases such as diabetic macular edema that affect the quality-of-life of millions of patients. 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Leukocyte-mediated endothelial cell injury and death in the diabetic retina.

              Endothelial cell death is a hallmark of diabetic retinopathy. Its occurrence is required for the formation of acellular (devitalized) capillaries, lesions that produce irreversible retinal ischemia through their inability to support blood flow. The mechanisms underlying diabetic retinal endothelial cell injury and death remain largely unknown. The current study demonstrates that adherent leukocytes are temporally and spatially associated with retinal endothelial cell injury and death within 1 week of streptozotocin-induced experimental diabetes in rats. Moreover, the antibody-based neutralization of intercellular adhesion molecule-1 and CD18 is shown to prevent both leukocyte adhesion and retinal endothelial cell injury and death. These data highlight the central and causal role of adherent leukocytes in the pathogenesis of diabetic retinopathy. They also underscore the potential utility of anti-intercellular adhesion molecule1- and anti-CD18-based therapies in the treatment of diabetic retinopathy, a newly recognized inflammatory disease.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: VisualizationRole: Writing – review & editing
                Role: Data curationRole: Formal analysisRole: InvestigationRole: ResourcesRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: ValidationRole: Writing – original draft
                Role: Formal analysisRole: ResourcesRole: ValidationRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: MethodologyRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Project administrationRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                22 August 2018
                2018
                : 13
                : 8
                : e0202156
                Affiliations
                [1 ] Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
                [2 ] Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
                [3 ] School of Optometry and Vision Science and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
                University of Florida, UNITED STATES
                Author notes

                Competing Interests: We, the authors declare that no competing interests exist.

                Author information
                http://orcid.org/0000-0001-5997-5994
                http://orcid.org/0000-0002-5018-339X
                Article
                PONE-D-18-16252
                10.1371/journal.pone.0202156
                6105000
                30133488
                67f5fd98-b764-44fc-8429-a66801c3bec1
                © 2018 Mugisho et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 May 2018
                : 27 July 2018
                Page count
                Figures: 9, Tables: 2, Pages: 20
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100009477, Lottery Health Research;
                The work was supported by 3707605 Lottery Health Research, https://www.communitymatters.govt.nz/lottery-health-research/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Cytokines
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Cytokines
                Biology and Life Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Medicine and Health Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Biology and Life Sciences
                Developmental Biology
                Molecular Development
                Cytokines
                Research and Analysis Methods
                Experimental Organism Systems
                Model Organisms
                Mouse Models
                Research and Analysis Methods
                Model Organisms
                Mouse Models
                Research and Analysis Methods
                Experimental Organism Systems
                Animal Models
                Mouse Models
                Biology and Life Sciences
                Anatomy
                Head
                Eyes
                Medicine and Health Sciences
                Anatomy
                Head
                Eyes
                Biology and Life Sciences
                Anatomy
                Ocular System
                Eyes
                Medicine and Health Sciences
                Anatomy
                Ocular System
                Eyes
                Medicine and Health Sciences
                Endocrinology
                Endocrine Disorders
                Diabetes Mellitus
                Medicine and Health Sciences
                Metabolic Disorders
                Diabetes Mellitus
                Biology and Life Sciences
                Anatomy
                Ocular System
                Ocular Anatomy
                Retina
                Medicine and Health Sciences
                Anatomy
                Ocular System
                Ocular Anatomy
                Retina
                Medicine and Health Sciences
                Inflammatory Diseases
                Biology and Life Sciences
                Anatomy
                Ocular System
                Optic Nerve
                Medicine and Health Sciences
                Anatomy
                Ocular System
                Optic Nerve
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Sugar
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Sugar
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Blood Sugar
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Blood
                Blood Sugar
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article