266
views
0
recommends
+1 Recommend
0 collections
    32
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We study a nonlinear, moving boundary fluid-structure interaction problem between an incompressible, viscous Newtonian fluid, modeled by the 2D Navier-Stokes equations, and an elastic structure modeled by the shell or plate equations. The fluid and structure are coupled via the {\em Navier slip boundary condition} and balance of contact forces at the fluid-structure interface. The slip boundary condition is more realistic than the classical no-slip boundary condition in situations, e.g., when the structure is "rough", and in modeling dynamics near, or at a contact. Cardiovascular tissue and cell-seeded tissue constructs, which consist of grooves in tissue scaffolds that are lined with cells, are examples of "rough" elastic interfaces interacting with and incompressible, viscous fluid. The problem of heart valve closure is an example of a fluid-structure interaction problem with a contact. We prove the existence of a weak solution to this class of problems by designing a constructive proof based on the time discretization via operator splitting. This is the first existence result for fluid-structure interaction problems involving elastic structures satisfying the Navier slip boundary condition

          Related collections

          Author and article information

          Journal
          2015-05-17
          2016-03-04
          Article
          1505.04462
          3e89d7e3-5350-4e51-be5e-ea5b5e60179e

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          math.AP

          Analysis
          Analysis

          Comments

          Comment on this article