Blog
About

73
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Know when your numbers are significant

       

      Nature

      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 5

          • Record: found
          • Abstract: found
          • Article: not found

          Effect size, confidence interval and statistical significance: a practical guide for biologists.

          Null hypothesis significance testing (NHST) is the dominant statistical approach in biology, although it has many, frequently unappreciated, problems. Most importantly, NHST does not provide us with two crucial pieces of information: (1) the magnitude of an effect of interest, and (2) the precision of the estimate of the magnitude of that effect. All biologists should be ultimately interested in biological importance, which may be assessed using the magnitude of an effect, but not its statistical significance. Therefore, we advocate presentation of measures of the magnitude of effects (i.e. effect size statistics) and their confidence intervals (CIs) in all biological journals. Combined use of an effect size and its CIs enables one to assess the relationships within data more effectively than the use of p values, regardless of statistical significance. In addition, routine presentation of effect sizes will encourage researchers to view their results in the context of previous research and facilitate the incorporation of results into future meta-analysis, which has been increasingly used as the standard method of quantitative review in biology. In this article, we extensively discuss two dimensionless (and thus standardised) classes of effect size statistics: d statistics (standardised mean difference) and r statistics (correlation coefficient), because these can be calculated from almost all study designs and also because their calculations are essential for meta-analysis. However, our focus on these standardised effect size statistics does not mean unstandardised effect size statistics (e.g. mean difference and regression coefficient) are less important. We provide potential solutions for four main technical problems researchers may encounter when calculating effect size and CIs: (1) when covariates exist, (2) when bias in estimating effect size is possible, (3) when data have non-normal error structure and/or variances, and (4) when data are non-independent. Although interpretations of effect sizes are often difficult, we provide some pointers to help researchers. This paper serves both as a beginner's instruction manual and a stimulus for changing statistical practice for the better in the biological sciences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A call for transparent reporting to optimize the predictive value of preclinical research.

            The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Error bars in experimental biology

              Error bars commonly appear in figures in publications, but experimental biologists are often unsure how they should be used and interpreted. In this article we illustrate some basic features of error bars and explain how they can help communicate data and assist correct interpretation. Error bars may show confidence intervals, standard errors, standard deviations, or other quantities. Different types of error bars give quite different information, and so figure legends must make clear what error bars represent. We suggest eight simple rules to assist with effective use and interpretation of error bars.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                December 2012
                December 12 2012
                December 2012
                : 492
                : 7428
                : 180-181
                Article
                10.1038/492180a
                23235861
                © 2012

                http://www.springer.com/tdm

                Comments

                Comment on this article