Blog
About

132
views
0
recommends
+1 Recommend
0 collections
    6
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recombinant protein expression in Escherichia coli: advances and challenges

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Escherichia coli is one of the organisms of choice for the production of recombinant proteins. Its use as a cell factory is well-established and it has become the most popular expression platform. For this reason, there are many molecular tools and protocols at hand for the high-level production of heterologous proteins, such as a vast catalog of expression plasmids, a great number of engineered strains and many cultivation strategies. We review the different approaches for the synthesis of recombinant proteins in E. coli and discuss recent progress in this ever-growing field.

          Related collections

          Most cited references 215

          • Record: found
          • Abstract: found
          • Article: not found

          Protein production by auto-induction in high density shaking cultures.

          Inducible expression systems in which T7 RNA polymerase transcribes coding sequences cloned under control of a T7lac promoter efficiently produce a wide variety of proteins in Escherichia coli. Investigation of factors that affect stability, growth, and induction of T7 expression strains in shaking vessels led to the recognition that sporadic, unintended induction of expression in complex media, previously reported by others, is almost certainly caused by small amounts of lactose. Glucose prevents induction by lactose by well-studied mechanisms. Amino acids also inhibit induction by lactose during log-phase growth, and high rates of aeration inhibit induction at low lactose concentrations. These observations, and metabolic balancing of pH, allowed development of reliable non-inducing and auto-inducing media in which batch cultures grow to high densities. Expression strains grown to saturation in non-inducing media retain plasmid and remain fully viable for weeks in the refrigerator, making it easy to prepare many freezer stocks in parallel and use working stocks for an extended period. Auto-induction allows efficient screening of many clones in parallel for expression and solubility, as cultures have only to be inoculated and grown to saturation, and yields of target protein are typically several-fold higher than obtained by conventional IPTG induction. Auto-inducing media have been developed for labeling proteins with selenomethionine, 15N or 13C, and for production of target proteins by arabinose induction of T7 RNA polymerase from the pBAD promoter in BL21-AI. Selenomethionine labeling was equally efficient in the commonly used methionine auxotroph B834(DE3) (found to be metE) or the prototroph BL21(DE3).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.

            We have constructed a series of plasmid vectors (pBAD vectors) containing the PBAD promoter of the araBAD (arabinose) operon and the gene encoding the positive and negative regulator of this promoter, araC. Using the phoA gene and phoA fusions to monitor expression in these vectors, we show that the ratio of induction/repression can be 1,200-fold, compared with 50-fold for PTAC-based vectors. phoA expression can be modulated over a wide range of inducer (arabinose) concentrations and reduced to extremely low levels by the presence of glucose, which represses expression. Also, the kinetics of induction and repression are very rapid and significantly affected by the ara allele in the host strain. Thus, the use of this system which can be efficiently and rapidly turned on and off allows the study of important aspects of bacterial physiology in a very simple manner and without changes of temperature. We have exploited the tight regulation of the PBAD promoter to study the phenotypes of null mutations of essential genes and explored the use of pBAD vectors as an expression system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes.

              A gene expression system based on bacteriophage T7 RNA polymerase has been developed. T7 RNA polymerase is highly selective for its own promoters, which do not occur naturally in Escherichia coli. A relatively small amount of T7 RNA polymerase provided from a cloned copy of T7 gene 1 is sufficient to direct high-level transcription from a T7 promoter in a multicopy plasmid. Such transcription can proceed several times around the plasmid without terminating, and can be so active that transcription by E. coli RNA polymerase is greatly decreased. When a cleavage site for RNase III is introduced, discrete RNAs of plasmid length can accumulate. The natural transcription terminator from T7 DNA also works effectively in the plasmid. Both the rate of synthesis and the accumulation of RNA directed by T7 RNA polymerase can reach levels comparable with those for ribosomal RNAs in a normal cell. These high levels of accumulation suggest that the RNAs are relatively stable, perhaps in part because their great length and/or stem-and-loop structures at their 3' ends help to protect them against exonucleolytic degradation. It seems likely that a specific mRNA produced by T7 RNA polymerase can rapidly saturate the translational machinery of E. coli, so that the rate of protein synthesis from such an mRNA will depend primarily on the efficiency of its translation. When the mRNA is efficiently translated, a target protein can accumulate to greater than 50% of the total cell protein in three hours or less. We have used two ways to deliver active T7 RNA polymerase to the cell; infection by a lambda derivative that carries gene 1, or induction of a chromosomal copy of gene 1 under control of the lacUV5 promoter. When gene 1 is delivered by infection, very toxic target genes can be maintained silent in the cell until T7 RNA polymerase is introduced, when they rapidly become expressed at high levels. When gene 1 is resident in the chromosome, even the very low basal levels of T7 RNA polymerase present in the uninduced cell can prevent the establishment of plasmids carrying toxic target genes, or make the plasmid unstable.(ABSTRACT TRUNCATED AT 400 WORDS)
                Bookmark

                Author and article information

                Affiliations
                1Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas Rosario, Argentina
                2Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Rosario, Argentina
                Author notes

                Edited by: Peter Neubauer, Technische Universität Berlin, Germany

                Reviewed by: Jose M. Bruno-Barcena, North Carolina State University, USA; Thomas Schweder, Ernst-Moritz-Arndt-Universität Greifswald, Germany

                *Correspondence: Germán L. Rosano, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Esmeralda y Ocampo, Rosario 2000, Argentina e-mail: rosano@ 123456ibr-conicet.gov.ar

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology.

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                17 April 2014
                2014
                : 5
                10.3389/fmicb.2014.00172
                4029002
                Copyright © 2014 Rosano and Ceccarelli.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Counts
                Figures: 1, Tables: 2, Equations: 0, References: 217, Pages: 17, Words: 0
                Categories
                Microbiology
                Review Article

                Comments

                Comment on this article