50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The GTR-model: a universal framework for quantum-like measurements

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a very general geometrico-dynamical description of physical or more abstract entities, called the 'general tension-reduction' (GTR) model, where not only states, but also measurement-interactions can be represented, and the associated outcome probabilities calculated. Underlying the model is the hypothesis that indeterminism manifests as a consequence of unavoidable fluctuations in the experimental context, in accordance with the 'hidden-measurements interpretation' of quantum mechanics. When the structure of the state space is Hilbertian, and measurements are of the 'universal' kind, i.e., are the result of an average over all possible ways of selecting an outcome, the GTR-model provides the same predictions of the Born rule, and therefore provides a natural completed version of quantum mechanics. However, when the structure of the state space is non-Hilbertian and/or not all possible ways of selecting an outcome are available to be actualized, the predictions of the model generally differ from the quantum ones, especially when sequential measurements are considered. Some paradigmatic examples will be discussed, taken from physics and human cognition. Particular attention will be given to some known psychological effects, like question order effects and response replicability, which we show are able to generate non-Hilbertian statistics. We also suggest a realistic interpretation of the GTR-model, when applied to human cognition and decision, which we think could become the generally adopted interpretative framework in quantum cognition research.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Quantum Structure in Cognition

          The broader scope of our investigations is the search for the way in which concepts and their combinations carry and influence meaning and what this implies for human thought. More specifically, we examine the use of the mathematical formalism of quantum mechanics as a modeling instrument and propose a general mathematical modeling scheme for the combinations of concepts. We point out that quantum mechanical principles, such as superposition and interference, are at the origin of specific effects in cognition related to concept combinations, such as the guppy effect and the overextension and underextension of membership weights of items. We work out a concrete quantum mechanical model for a large set of experimental data of membership weights with overextension and underextension of items with respect to the conjunction and disjunction of pairs of concepts, and show that no classical model is possible for these data. We put forward an explanation by linking the presence of quantum aspects that model concept combinations to the basic process of concept formation. We investigate the implications of our quantum modeling scheme for the structure of human thought, and show the presence of a two-layer structure consisting of a classical logical layer and a quantum conceptual layer. We consider connections between our findings and phenomena such as the disjunction effect and the conjunction fallacy in decision theory, violations of the sure thing principle, and the Allais and Elsberg paradoxes in economics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Theory of Concepts and Their Combinations II: A Hilbert Space Representation

            , (2010)
            The sets of contexts and properties of a concept are embedded in the complex Hilbert space of quantum mechanics. States are unit vectors or density operators, and contexts and properties are orthogonal projections. The way calculations are done in Hilbert space makes it possible to model how context influences the state of a concept. Moreover, a solution to the combination of concepts is proposed. Using the tensor product, a procedure for describing combined concepts is elaborated, providing a natural solution to the pet fish problem. This procedure allows the modeling of an arbitrary number of combined concepts. By way of example, a model for a simple sentence containing a subject, a predicate and an object, is presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantum structure and human thought.

              We support the authors' claims, except that we point out that also quantum structure different from quantum probability abundantly plays a role in human cognition. We put forward several elements to illustrate our point, mentioning entanglement, contextuality, interference, and emergence as effects, and states, observables, complex numbers, and Fock space as specific mathematical structures.
                Bookmark

                Author and article information

                Journal
                2015-12-02
                Article
                10.1142/9789813146280_0005
                1512.00880
                682e16b0-46a0-4e05-92ef-75476c5f4d67

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                33 pages, 5 figures
                quant-ph cs.AI

                Quantum physics & Field theory,Artificial intelligence
                Quantum physics & Field theory, Artificial intelligence

                Comments

                Comment on this article