13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigenetic Regulation of Hematopoietic Stem Cells

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hematopoietic stem cells are endowed with a distinct potential to bolster self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. Both hematopoietic stem cells and mature cells have the same genome, but their gene expression is controlled by an additional layer of epigenetics such as DNA methylation and post-translational histone modifications, enabling each cell-type to acquire various forms and functions. Until recently, several studies have largely focussed on the transcription factors andniche factors for the understanding of the molecular mechanisms by which hematopoietic cells replicate and differentiate. Several lines of emerging evidence suggest that epigenetic modifications eventually result in a defined chromatin structure and an “individual” gene expression pattern, which play an essential role in the regulation of hematopoietic stem cell self-renewal and differentiation. Distinct epigenetic marks decide which sets of genes may be expressed and which genes are kept silent. Epigenetic mechanisms are interdependent and ensure lifelong production of blood and bone marrow, thereby contributing to stem cell homeostasis. The epigenetic analysis of hematopoiesis raises the exciting possibility that chromatin structure is dynamic enough for regulated expression of genes. Though controlled chromatin accessibility plays an essential role in maintaining blood homeostasis; mutations in chromatin impacts on the regulation of genes critical to the development of leukemia. In this review, we explored the contribution of epigenetic machinery which has implications for the ramification of molecular details of hematopoietic self-renewal for normal development and underlying events that potentially co-operate to induce leukemia.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Epigenetics in cancer.

          Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Global changes in the epigenetic landscape are a hallmark of cancer. The initiation and progression of cancer, traditionally seen as a genetic disease, is now realized to involve epigenetic abnormalities along with genetic alterations. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer including DNA methylation, histone modifications, nucleosome positioning and non-coding RNAs, specifically microRNA expression. The reversible nature of epigenetic aberrations has led to the emergence of the promising field of epigenetic therapy, which is already making progress with the recent FDA approval of three epigenetic drugs for cancer treatment. In this review, we discuss the current understanding of alterations in the epigenetic landscape that occur in cancer compared with normal cells, the roles of these changes in cancer initiation and progression, including the cancer stem cell model, and the potential use of this knowledge in designing more effective treatment strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells.

            A central issue in stem cell biology is to understand the mechanisms that regulate the self-renewal of haematopoietic stem cells (HSCs), which are required for haematopoiesis to persist for the lifetime of the animal. We found that adult and fetal mouse and adult human HSCs express the proto-oncogene Bmi-1. The number of HSCs in the fetal liver of Bmi-1-/- mice was normal. In postnatal Bmi-1-/- mice, the number of HSCs was markedly reduced. Transplanted fetal liver and bone marrow cells obtained from Bmi-1-/- mice were able to contribute only transiently to haematopoiesis. There was no detectable self-renewal of adult HSCs, indicating a cell autonomous defect in Bmi-1-/- mice. A gene expression analysis revealed that the expression of stem cell associated genes, cell survival genes, transcription factors, and genes modulating proliferation including p16Ink4a and p19Arf was altered in bone marrow cells of the Bmi-1-/- mice. Expression of p16Ink4a and p19Arf in normal HSCs resulted in proliferative arrest and p53-dependent cell death, respectively. Our results indicate that Bmi-1 is essential for the generation of self-renewing adult HSCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells.

              An emerging concept in the field of cancer biology is that a rare population of 'tumour stem cells' exists among the heterogeneous group of cells that constitute a tumour. This concept, best described with human leukaemia, indicates that stem cell function (whether normal or neoplastic) might be defined by a common set of critical genes. Here we show that the Polycomb group gene Bmi-1 has a key role in regulating the proliferative activity of normal stem and progenitor cells. Most importantly, we provide evidence that the proliferative potential of leukaemic stem and progenitor cells lacking Bmi-1 is compromised because they eventually undergo proliferation arrest and show signs of differentiation and apoptosis, leading to transplant failure of the leukaemia. Complementation studies showed that Bmi-1 completely rescues these proliferative defects. These studies therefore indicate that Bmi-1 has an essential role in regulating the proliferative activity of both normal and leukaemic stem cells.
                Bookmark

                Author and article information

                Journal
                Int J Stem Cells
                Int J Stem Cells
                IJSC
                International Journal of Stem Cells
                Korean Society for Stem Cell Research
                2005-3606
                2005-5447
                May 2016
                : 9
                : 1
                : 36-43
                Affiliations
                Division of Stem Cell Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences (INMAS), Delhi, India
                Author notes
                Correspondence to Gangenahalli Gurudutta, Division of Stem Cell Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India, Tel: +91-11-23905144, Fax: +91-11-25737049, E-mail: gugdutta@ 123456rediffmail.com
                Article
                ijsc-09-036
                10.15283/ijsc.2016.9.1.36
                4961102
                27426084
                68453b2d-c046-4a23-923f-df490704eb84
                Copyright ©2016, Korean Society for Stem Cell Research

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 December 2015
                Categories
                Review Article

                epigenetics,self-renewal,regulation,hematopoietic stem cells

                Comments

                Comment on this article