2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distinctive responses in anterior temporal lobe and ventrolateral prefrontal cortex during categorization of semantic information

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Semantic categorization is a fundamental ability in language as well as in interaction with the environment. However, it is unclear what cognitive and neural basis generates this flexible and context dependent categorization of semantic information. We performed behavioral and fMRI experiments with a semantic priming paradigm to clarify this. Participants conducted semantic decision tasks in which a prime word preceded target words, using names of animals (mammals, birds, or fish). We focused on the categorization of unique marine mammals, having characteristics of both mammals and fish. Behavioral experiments indicated that marine mammals were semantically closer to fish than terrestrial mammals, inconsistent with the category membership. The fMRI results showed that the left anterior temporal lobe was sensitive to the semantic distance between prime and target words rather than category membership, while the left ventrolateral prefrontal cortex was sensitive to the consistency of category membership of word pairs. We interpreted these results as evidence of existence of dual processes for semantic categorization. The combination of bottom-up processing based on semantic characteristics in the left anterior temporal lobe and top-down processing based on task and/or context specific information in the left ventrolateral prefrontal cortex is required for the flexible categorization of semantic information.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          The brain's default network: anatomy, function, and relevance to disease.

          Thirty years of brain imaging research has converged to define the brain's default network-a novel and only recently appreciated brain system that participates in internal modes of cognition. Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment. Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system. Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others. Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems. The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation. The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations. These two subsystems converge on important nodes of integration including the posterior cingulate cortex. The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world. We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Control of goal-directed and stimulus-driven attention in the brain.

            We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Matching categorical object representations in inferior temporal cortex of man and monkey.

              Inferior temporal (IT) object representations have been intensively studied in monkeys and humans, but representations of the same particular objects have never been compared between the species. Moreover, IT's role in categorization is not well understood. Here, we presented monkeys and humans with the same images of real-world objects and measured the IT response pattern elicited by each image. In order to relate the representations between the species and to computational models, we compare response-pattern dissimilarity matrices. IT response patterns form category clusters, which match between man and monkey. The clusters correspond to animate and inanimate objects; within the animate objects, faces and bodies form subclusters. Within each category, IT distinguishes individual exemplars, and the within-category exemplar similarities also match between the species. Our findings suggest that primate IT across species may host a common code, which combines a categorical and a continuous representation of objects.
                Bookmark

                Author and article information

                Contributors
                ihara@nict.go.jp
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                25 June 2021
                25 June 2021
                2021
                : 11
                : 13343
                Affiliations
                [1 ]GRID grid.136593.b, ISNI 0000 0004 0373 3971, Center for Information and Neural Networks, , National Institute of Information and Communications Technology, and Osaka University, ; 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Japan
                [2 ]GRID grid.449555.c, ISNI 0000 0004 0569 1963, Present Address: Kansai University of Welfare Sciences, ; Kashiwara, Japan
                [3 ]GRID grid.258799.8, ISNI 0000 0004 0372 2033, Present Address: Kyoto University, ; Kyoto, Japan
                Article
                92726
                10.1038/s41598-021-92726-7
                8233387
                34172800
                685d330f-ec7c-4481-8e6b-0fdb4cb98bf5
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 18 June 2020
                : 15 June 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                neuroscience,psychology
                Uncategorized
                neuroscience, psychology

                Comments

                Comment on this article