15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A new subtribal classification of the tribeAnthemideae (Compositae)

      , ,
      Willdenowia
      Botanic Garden & Botanical Museum Berlin-Dahlem BGBM

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea.

          A maximum likelihood method for inferring evolutionary trees from DNA sequence data was developed by Felsenstein (1981). In evaluating the extent to which the maximum likelihood tree is a significantly better representation of the true tree, it is important to estimate the variance of the difference between log likelihood of different tree topologies. Bootstrap resampling can be used for this purpose (Hasegawa et al. 1988; Hasegawa and Kishino 1989), but it imposes a great computation burden. To overcome this difficulty, we developed a new method for estimating the variance by expressing it explicitly. The method was applied to DNA sequence data from primates in order to evaluate the maximum likelihood branching order among Hominoidea. It was shown that, although the orangutan is convincingly placed as an outgroup of a human and African apes clade, the branching order among human, chimpanzee, and gorilla cannot be determined confidently from the DNA sequence data presently available when the evolutionary rate constancy is not assumed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Use of DNA barcodes to identify flowering plants.

            Methods for identifying species by using short orthologous DNA sequences, known as "DNA barcodes," have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short ( approximately 450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phylogenetic systematics turns over a new leaf.

              Paul Lewis (2001)
              Long restricted to the domain of molecular systematics and studies of molecular evolution, likelihood methods are now being used in analyses of discrete morphological data, specifically to estimate ancestral character states and for tests of character correlation. Biologists are beginning to apply likelihood models within a Bayesian statistical framework, which promises not only to provide answers that evolutionary biologists desire, but also to make practical the application of more realistic evolutionary models.
                Bookmark

                Author and article information

                Journal
                Willdenowia
                Willdenowia
                Botanic Garden & Botanical Museum Berlin-Dahlem BGBM
                0511-9618
                1868-6397
                August 31 2007
                August 31 2007
                : 37
                : 1
                : 89-114
                Article
                10.3372/wi.37.37104
                68632773-bfc6-4600-980c-33c386a227c2
                © 2007
                History

                Comments

                Comment on this article