83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Screening Mosquito House Entry Points as a Potential Method for Integrated Control of Endophagic Filariasis, Arbovirus and Malaria Vectors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Partial mosquito-proofing of houses with screens and ceilings has the potential to reduce indoor densities of malaria mosquitoes. We wish to measure whether it will also reduce indoor densities of vectors of neglected tropical diseases.

          Methodology

          The main house entry points preferred by anopheline and culicine vectors were determined through controlled experiments using specially designed experimental huts and village houses in Lupiro village, southern Tanzania. The benefit of screening different entry points (eaves, windows and doors) using PVC-coated fibre glass netting material in terms of reduced indoor densities of mosquitoes was evaluated compared to the control.

          Findings

          23,027 mosquitoes were caught with CDC light traps; 77.9% (17,929) were Anopheles gambiae sensu lato, of which 66.2% were An. arabiensis and 33.8% An. gambiae sensu stricto. The remainder comprised 0.2% (50) An. funestus, 10.2% (2359) Culex spp. and 11.6% (2664) Mansonia spp. Screening eaves reduced densities of Anopheles gambiae s. l. (Relative ratio (RR)  = 0.91; 95% CI = 0.84, 0.98; P = 0.01); Mansonia africana (RR = 0.43; 95% CI = 0.26, 0.76; P<0.001) and Mansonia uniformis (RR = 0.37; 95% CI = 0.25, 0.56; P<0.001) but not Culex quinquefasciatus, Cx. univittatus or Cx. theileri. Numbers of these species were reduced by screening windows and doors but this was not significant.

          Significance

          This study confirms that across Africa, screening eaves protects households against important mosquito vectors of filariasis, Rift Valley Fever and O'Nyong nyong as well as malaria. While full house screening is required to exclude Culex species mosquitoes, screening of eaves alone or fitting ceilings has considerable potential for integrated control of other vectors of filariasis, arbovirus and malaria.

          Author Summary

          Mosquito vectors that transmit filariasis and several arboviruses such as Rift Valley Fever, Chikungunya and O'Nyong nyong as well as malaria co-occur across tropical Africa. These diseases are co-endemic in most rural African countries where they are transmitted by the same mosquito vectors. The only control measure currently in widespread use is mass drug administration for filariasis. In this study, we used controlled experiments to evaluate the benefit of screening the main mosquito entry points into houses, namely, eaves, windows and doors. This study aims to illustrate the potential of screening specific house openings with the intention of preventing endophagic mosquitoes from entering houses and thus reducing contact between humans and vectors of neglected tropical diseases. This study confirms that while full house screening is effective for reducing indoor densities of Culex spp. mosquitoes, screening of eaves alone has a great potential for integrated control of neglected tropical diseases and malaria.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction.

          A ribosomal DNA-polymerase chain reaction (PCR) method has been developed for species identification of individuals of the five most widespread members of the Anopheles gambiae complex, a group of morphologically indistinguishable sibling mosquito species that includes the major vectors of malaria in Africa. The method, which is based on species-specific nucleotide sequences in the ribosomal DNA intergenic spacers, may be used to identify both species and interspecies hybrids, regardless of life stage, using either extracted DNA or fragments of a specimen. Intact portions of a mosquito as small as an egg or the segment of one leg may be placed directly into the PCR mixture for amplification and analysis. The method uses a cocktail of five 20-base oligonucleotides to identify An. gambiae, An. arabiensis, An. quadriannnulatus, and either An. melas in western Africa or An. melas in eastern and southern Africa.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic.

            R. W. Ross (1956)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rift Valley fever virus (family Bunyaviridae, genus Phlebovirus). Isolations from Diptera collected during an inter-epizootic period in Kenya.

              A total of 134 876 Diptera collected in Kenya during a 3-year period were tested in 3383 pools for Rift Valley fever (RVF) virus. Nineteen pools of unengorged mosquitoes were found positive for RVF. All isolations were made from specimens collected at or near the naturally or artificially flooded grassland depressions that serve as the developmental sites for the immature stages of many mosquito species. The isolation of virus from adult male and female A. lineatopennis which had been reared from field-collected larvae and pupae suggests that transovarial transmission of the virus occurs in this species.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                August 2010
                3 August 2010
                : 4
                : 8
                : e773
                Affiliations
                [1 ]School of Biological Sciences, University of Nairobi, Nairobi, Kenya
                [2 ]Ifakara Health Institute, Ifakara, Tanzania
                [3 ]Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
                [4 ]University of Dar es Salaam, Dar es Salaam, Tanzania
                [5 ]Department of Clinical Veterinary Science, Universität Bern, Bern, Switzerland
                [6 ]School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
                [7 ]Liverpool School of Tropical Medicine, Liverpool, United Kingdom
                London School of Hygiene and Tropical Medicine, United Kingdom
                Author notes

                Conceived and designed the experiments: TLR SJM. Performed the experiments: SBO DWL HN. Analyzed the data: SBO GFK SJM. Wrote the paper: SBO GFK SJM. Carried out identification of Culex species mosquitoes to species level: BF. Edited the manuscript: TLR WRM GFK SJM. Identified mosquitoes to species level: SJM.

                Article
                09-PNTD-RA-0140R4
                10.1371/journal.pntd.0000773
                2914752
                20689815
                6863ba1c-6062-47b2-98af-2f408fff35fb
                Ogoma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 March 2009
                : 24 June 2010
                Page count
                Pages: 8
                Categories
                Research Article
                Infectious Diseases/Epidemiology and Control of Infectious Diseases
                Infectious Diseases/Neglected Tropical Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article