13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Translating the ‘Sugar Code’ into Immune and Vascular Signaling Programs

      , , , ,
      Trends in Biochemical Sciences
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references144

          • Record: found
          • Abstract: found
          • Article: not found

          Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation.

          The number of N-glycans (n) is a distinct feature of each glycoprotein sequence and cooperates with the physical properties of the Golgi N-glycan-branching pathway to regulate surface glycoprotein levels. The Golgi pathway is ultrasensitive to hexosamine flux for the production of tri- and tetra-antennary N-glycans, which bind to galectins and form a molecular lattice that opposes glycoprotein endocytosis. Glycoproteins with few N-glycans (e.g., TbetaR, CTLA-4, and GLUT4) exhibit enhanced cell-surface expression with switch-like responses to increasing hexosamine concentration, whereas glycoproteins with high numbers of N-glycans (e.g., EGFR, IGFR, FGFR, and PDGFR) exhibit hyperbolic responses. Computational and experimental data reveal that these features allow nutrient flux stimulated by growth-promoting high-n receptors to drive arrest/differentiation programs by increasing surface levels of low-n glycoproteins. We have identified a mechanism for metabolic regulation of cellular transition between growth and arrest in mammals arising from apparent coevolution of N-glycan number and branching.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells.

            CD4+ T helper 1 (TH1) cells are important mediators of inflammation and are regulated by numerous pathways, including the negative immune receptor Tim-3. We found that Tim-3 is constitutively expressed on cells of the innate immune system in both mice and humans, and that it can synergize with Toll-like receptors. Moreover, an antibody agonist of Tim-3 acted as an adjuvant during induced immune responses, and Tim-3 ligation induced distinct signaling events in T cells and dendritic cells; the latter finding could explain the apparent divergent functions of Tim-3 in these cell types. Thus, by virtue of differential expression on innate versus adaptive immune cells, Tim-3 can either promote or terminate TH1 immunity and may be able to influence a range of inflammatory conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals.

              A dense mucus layer in the large intestine prevents inflammation by shielding the underlying epithelium from luminal bacteria and food antigens. This mucus barrier is organized around the hyperglycosylated mucin MUC2. Here we show that the small intestine has a porous mucus layer, which permitted the uptake of MUC2 by antigen-sampling dendritic cells (DCs). Glycans associated with MUC2 imprinted DCs with anti-inflammatory properties by assembling a galectin-3-Dectin-1-FcγRIIB receptor complex that activated β-catenin. This transcription factor interfered with DC expression of inflammatory but not tolerogenic cytokines by inhibiting gene transcription through nuclear factor κB. MUC2 induced additional conditioning signals in intestinal epithelial cells. Thus, mucus does not merely form a nonspecific physical barrier, but also constrains the immunogenicity of gut antigens by delivering tolerogenic signals.
                Bookmark

                Author and article information

                Journal
                Trends in Biochemical Sciences
                Trends in Biochemical Sciences
                Elsevier BV
                09680004
                April 2017
                April 2017
                : 42
                : 4
                : 255-273
                Article
                10.1016/j.tibs.2016.11.003
                27986367
                686ff014-db87-4506-ac74-2a004eafc4da
                © 2017
                History

                Comments

                Comment on this article