7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbial Community and Fermentation Dynamics of Corn Silage Prepared with Heat-Resistant Lactic Acid Bacteria in a Hot Environment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To develop a silage fermentation technique to adapt to global climate changes, the microbiome and fermentation dynamics of corn silage inoculated with heat-resistant lactic acid bacteria (LAB) under high-temperature conditions were studied. Corn was ensiled in laboratory silo, with and without two selected strains, Lactobacillus salivarius LS358 and L. rhamnosus LR753, two type strains L. salivarius ATCC 11741 T and L. rhamnosus ATCC 7469 T. The ensiling temperatures were designed at 30 °C and 45 °C, and the sampling took place after 0, 3, 7, 14, and 60 days of fermentation. The higher pH and dry matter losses were observed in the silages stored at 45 °C compared to those stored at 30 °C. Silages inoculated with strains LS358 and LR753 at 30 °C had a lower ratio of lactic acid/acetic acid. The dominant bacterial genera gradually changed from Pediococcus and Lactobacillus to Lactobacillus in silages during ensiling at 30 °C, while the bacterial community became more complex and fragmented after 7 d of ensiling at 45 °C. The high temperatures significantly led to a transformation of the LAB population from homo-fermentation to hetero-fermentation. This study is the first to describe microbial population dynamics response to high temperature during corn ensiling, and the results indicate that L. rhamnosus 753 shows potential ability to improve silage fermentation in tropics and subtropics.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Silage review: Interpretation of chemical, microbial, and organoleptic components of silages

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Microbial communities and natural fermentation of corn silages prepared with farm bunker-silo in Southwest China

                Bookmark

                Author and article information

                Journal
                Microorganisms
                Microorganisms
                microorganisms
                Microorganisms
                MDPI
                2076-2607
                12 May 2020
                May 2020
                : 8
                : 5
                : 719
                Affiliations
                [1 ]College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 6111130, China
                [2 ]Institute of Grass Science, Chongqing Academy of Animal Husbandry, Chongqing 402460, China
                [3 ]Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki 305-8686, Japan
                Author notes
                [* ]Correspondence: cai@ 123456affrc.go.jp (Y.C.); zhangxq@ 123456sicau.edu.cn (X.Z.)
                Author information
                https://orcid.org/0000-0002-8749-1804
                https://orcid.org/0000-0002-1433-9510
                Article
                microorganisms-08-00719
                10.3390/microorganisms8050719
                7285033
                32408707
                68805453-ab5c-4868-845f-7579ceb4b8fa
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 April 2020
                : 09 May 2020
                Categories
                Article

                bacteria community,fermentation dynamics,high temperature,lactic acid bacteria,corn silage

                Comments

                Comment on this article