+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Involvement of NADPH Oxidases in Cardiac Remodelling and Heart Failure

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Cardiac remodelling occurs in response to stress, such as chronic hypertension or myocardial infarction, and forms the substrate for subsequent development of heart failure. Key pathophysiological features include ventricular hypertrophy, interstitial fibrosis, contractile dysfunction, and chamber dilatation. Although the molecular mechanisms are complex and not fully defined, substantial evidence now implicates increased oxidative stress as being important. The NADPH oxidase (‘Nox’) enzymes are a particularly important source of reactive oxygen species that are implicated in redox signalling. This article reviews the evidence for an involvement of NADPH oxidases in different aspects of adverse cardiac remodelling. A better understanding of the roles of this complex enzyme family may define novel therapeutic targets for the prevention of heart failure.

          Related collections

          Most cited references 82

          • Record: found
          • Abstract: found
          • Article: not found

          Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production.

          Chronic granulomatous disease (CGD) is a recessive disorder characterized by a defective phagocyte respiratory burst oxidase, life-threatening pyogenic infections and inflammatory granulomas. Gene targeting was used to generate mice with a null allele of the gene involved in X-linked CGD, which encodes the 91 kD subunit of the oxidase cytochrome b. Affected hemizygous male mice lacked phagocyte superoxide production, manifested an increased susceptibility to infection with Staphylococcus aureus and Aspergillus fumigatus and had an altered inflammatory response in thioglycollate peritonitis. This animal model should aid in developing new treatments for CGD and in evaluating the role of phagocyte-derived oxidants in inflammation.
            • Record: found
            • Abstract: found
            • Article: not found

            NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts.

            Human cardiac fibroblasts are the main source of cardiac fibrosis associated with cardiac hypertrophy and heart failure. Transforming growth factor-beta1 (TGF-beta1) irreversibly converts fibroblasts into pathological myofibroblasts, which express smooth muscle alpha-actin (SM alpha-actin) de novo and produce extracellular matrix. We hypothesized that TGF-beta1-stimulated conversion of fibroblasts to myofibroblasts requires reactive oxygen species derived from NAD(P)H oxidases (Nox). We found that TGF-beta1 potently upregulates the contractile marker SM alpha-actin mRNA (7.5+/-0.8-fold versus control). To determine whether Nox enzymes are involved, we first performed quantitative real time polymerase chain reaction and found that Nox5 and Nox4 are abundantly expressed in cardiac fibroblasts, whereas Nox1 and Nox2 are barely detectable. On stimulation with TGF-beta1, Nox4 mRNA is dramatically upregulated by 16.2+/-0.8-fold (n=3, P<0.005), whereas Nox5 is downregulated. Small interference RNA against Nox4 downregulates Nox4 mRNA by 80+/-5%, inhibits NADPH-driven superoxide production in response to TGF-beta1 by 65+/-7%, and reduces TGF-beta1-induced expression of SM alpha-actin by 95+/-2% (n=6, P<0.05). Because activation of small mothers against decapentaplegic (Smads) 2/3 is critical for myofibroblast conversion in response to TGF-beta1, we also determined whether Nox4 affects Smad 2/3 phosphorylation. Depletion of Nox4 but not Nox5 inhibits baseline and TGF-beta1 stimulation of Smad 2/3 phosphorylation by 75+/-5% and 68+/-3%, respectively (n=7, P<0.0001). We conclude that Nox 4 mediates TGF-beta1-induced conversion of fibroblasts to myofibroblasts by regulating Smad 2/3 activation. Thus, Nox4 may play a critical role in the pathological activation of cardiac fibroblasts in cardiac fibrosis associated with human heart failure.
              • Record: found
              • Abstract: not found
              • Article: not found

              Oxygen, oxidative stress, hypoxia, and heart failure


                Author and article information

                Am J Nephrol
                American Journal of Nephrology
                S. Karger AG
                October 2007
                27 September 2007
                : 27
                : 6
                : 649-660
                Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, London, UK
                109148 Am J Nephrol 2007;27:649–660
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 4, Tables: 1, References: 115, Pages: 12
                Kidney and beyond – Review Article


                Comment on this article