45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hepatotoxicity and pharmacokinetics of cisplatin in combination therapy with a traditional Chinese medicine compound of Zengmian Yiliu granules in ICR mice and SKOV-3-bearing nude mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cisplatin (CDDP) is a highly effective chemotherapeutic agent used for therapy of many tumors and has been limited by its toxicity. Zengmian Yiliu granule (ZMYL), a compound preparation of traditional Chinese medicines, has been used in clinic as a complementary and alternative medicine for attenuating CDDP-induced toxicities and enhancing the tumor therapeutic effect of CDDP. The aim of the present study is to investigate hepaprotective effect of ZMYL against CDDP-induced hepatotoxicity. Further, the pharmacokinetic characteristics of CDDP in SKOV-3-bearing nude mice were observed.

          Methods

          The ICR mice were dosed orally with ZMYL for 7 days and then CDDP was injected intraperitoneally at a dose of 45 mg/kg body weight. The serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured to evaluate the liver function. The total glutathione (T-GSH), reduced glutathione (GSH) and glutathione S-transferase (GST) levels were determined to evaluate the oxidant damage in liver homogenates. Tissue pathological change in liver was conducted by light microscopy analysis. The pharmacokinetic and tissue distribution of free and total platinum (Pt) after dosing of CDDP alone and combination with ZMYL were determined in SKOV-3-bearing nude mice by ICP-MS.

          Results

          Oral administration of ZMYL prior to the CDDP treatment could prevent the CDDP-induced in lifting of ALT and AST, reduction of T-GSH, R-GSH and GST, and some histopathological alterations in ICR mice. Some differences in pharmacokinetic parameters between the two groups have been observed in higher CL and decreased MRT of free platinum (Pt) in plasma and total Pt in spleen in CDDP co-administration with ZMYL group. It indicated CDDP was cleared more quickly from blood and spleen, and could reduce the accumulation and toxic possibility of CDDP in combination with ZMYL.

          Conclusions

          ZMYL could be used as a beneficial supplement, which could attenuate CDDP-induced hepatotoxicity during CDDP chemotherapy and did not disturb the pharmacokinetics fate of CDDP significantly.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12906-015-0799-9) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          The Discovery and Development of Cisplatin

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1.

            In this study, the possible potentiation of cisplatin-induced hepatotoxicity by cytochrome P450 2E1 (CYP2E1) was examined both in vitro and in vivo. Transfected HepG2 cells expressing CYP2E1 (E47 cells) and not expressing CYP2E1 (C34 cells) were used as an in vitro model, and mice drinking 2% acetone for 7 days to induce CYP2E1 were used as an in vivo model. Exposure of E47 cells to cisplatin caused a much greater loss of cell viability, more striking depletion of reduced glutathione (GSH), and higher reactive oxygen species (ROS) production as compared with C34 cells. The prooxidant L-buthionine-[R,S]-sulfoximine (BSO), which depletes GSH, enhanced cisplatin-induced loss of cell viability, whereas the antioxidant glutathione ethyl ester, or the iron chelator deferoxamine mesylate (DFO) protected against the cisplatin-induced loss of E47 cell viability. Diallyl sulfide (DAS), an inhibitor of CYP2E1, also protected against the cisplatin toxicity in the E47 cells. After being injected with cisplatin (ip, 45 mg/kg), mice drinking 2% acetone with increased CYP2E1 levels exhibited elevated levels of serum ALT and AST, liver caspase-3 activity and positive staining of TUNEL increased, and histopathology indicated the presence of necrotic foci in livers of acetone plus cisplatin-treated mice. Lipid peroxidation and protein oxidation as indicated by carbonyl formation, staining of 3-nitrotyrosine (3-NT) and iron were higher in the cisplatin plus acetone group, compared with cisplatin alone group. Both in vitro and in vivo results indicate that elevated CYP2E1 enhances cisplatin-induced hepatotoxicity, and the mechanism may involve increased production of ROS and oxidative stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carnosic acid attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity.

              Nephrotoxicity is one of the serious dose limiting side effects of cisplatin when used in the treatment of various malignant conditions. Accumulating evidence suggests that oxidative stress caused by free radicals and apoptosis of renal cells contributes to the pathogenesis of cisplatin-induced nephrotoxicity. Present study was aimed to explore the effect of carnosic acid, a potent antioxidant, against cisplatin induced oxidative stress and nephrotoxicity in rats. A single dose of cisplatin (7.5mg/kg) caused marked renal damage, characterized by a significant (P<0.05) increase in serum creatinine, blood urea nitrogen (BUN) and relative weight of kidney with higher kidney MDA (malondialdehyde), tROS (total reactive oxygen species), caspase 3, GSH (reduced glutathione) levels and lowered tissue nitrite, SOD (superoxide dismutase), CAT (catalase), GSH-Px (glutathione peroxidase), GR (glutathione reductase) and GST (glutathione S-transferase) levels compared to normal control. Carnosic acid treatment significantly (P<0.05) attenuated the increase in lipid peroxidation, caspase-3 and ROS generation and enhanced the levels of reduced glutathione, tissue nitrite level and activities of SOD, CAT, GSH-Px, GR and GST compared to cisplatin control. The present study demonstrates that carnosic acid has a protective effect on cisplatin induced experimental nephrotoxicity and is attributed to its potent antioxidant and antiapoptotic properties. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                qicongxzq@aliyun.com
                086-021-51322511 , wchcxm@hotmail.com
                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central (London )
                1472-6882
                18 August 2015
                18 August 2015
                2015
                : 15
                : 283
                Affiliations
                [ ]The Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of TCM Complex Prescription, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai, 201203 People’s Republic of China
                [ ]Department of Gynaecology, Shanghai Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Zhangjiang Hi-Tech Park, Shanghai, 201203 People’s Republic of China
                [ ]Research Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai, 201203 People’s Republic of China
                [ ]School and Chemical and Environmental Engineering, Shanghai Institute of Techanology, 100 Haiquan Road, Fengxian Shanghai, 201418 People’s Republic of China
                Article
                799
                10.1186/s12906-015-0799-9
                4538754
                26283082
                68a4e620-a10c-46b7-beba-8cc9696d0e33
                © Gong et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 April 2015
                : 3 August 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Complementary & Alternative medicine
                cisplatin,hepatotoxicity,pharmacokinetics,zengmian yiliu granule

                Comments

                Comment on this article