4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid‐induced osteoporosis

      , , , ,
      Rheumatology
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro.

          Human bone marrow contains a population of cells capable of differentiating along multiple mesenchymal cell lineages. Recently, techniques for the purification and culture-expansion of these human marrow-derived Mesenchymal Stem Cells (MSCs) have been developed. The goals of the current study were to establish a reproducible system for the in vitro osteogenic differentiation of human MSCs, and to characterize the effect of changes in the microenvironment upon the process. MSCs derived from 2nd or 3rd passage were cultured for 16 days in various base media containing 1 to 1000 nM dexamethasone (Dex), 0.01 to 4 mM L-ascorbic acid-2-phosphate (AsAP) or 0.25 mM ascorbic acid, and 1 to 10 mM beta-glycerophosphate (beta GP). Optimal osteogenic differentiation, as determined by osteoblastic morphology, expression of alkaline phosphatase (APase), reactivity with anti-osteogenic cell surface monoclonal antibodies, modulation of osteocalcin mRNA production, and the formation of a mineralized extracellular matrix containing hydroxyapatite was achieved with DMEM base medium plus 100 nM Dex, 0.05 mM AsAP, and 10 mM beta GP. The formation of a continuously interconnected network of APase-positive cells and mineralized matrix supports the characterization of this progenitor population as homogeneous. While higher initial seeding densities did not affect cell number of APase activity, significantly more mineral was deposited in these cultures, suggesting that events which occur early in the differentiation process are linked to end-stage phenotypic expression. Furthermore, cultures allowed to concentrate their soluble products in the media produced more mineralized matrix, thereby implying a role for autocrine or paracrine factors synthesized by human MSCs undergoing osteoblastic lineage progression. This culture system is responsive to subtle manipulations including the basal nutrient medium, dose of physiologic supplements, cell seeding density, and volume of tissue culture medium. Cultured human MSCs provide a useful model for evaluating the multiple factors responsible for the step-wise progression of cells from undifferentiated precursors to secretory osteoblasts, and eventually terminally differentiated osteocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha.

            We previously reported the purification, culture-expansion, and osteogenic differentiation potential of mesenchymal progenitor cells (MPCs) derived from human bone marrow. As a first step to establishing the phenotypic characteristics of MPCs, we reported on the identification of unique cell surface proteins which were detected with monoclonal antibodies. In this study, the phenotypic characterization of human marrow-derived MPCs is further established through the identification of a cytokine expression profile under standardized growth medium conditions and in the presence of regulators of the osteogenic and stromal cell lineages, dexamethasone and interleukin-1 alpha (IL-1 alpha), respectively. Constitutively expressed cytokines in this growth phase include G-CSF, SCF, LIF, M-CSF, IL-6, and IL-11, while GM-CSF, IL-3, TGF-beta 2 and OSM were not detected in the growth medium. Exposure of cells in growth medium to dexamethasone resulted in a decrease in the expression of LIF, IL-6, and IL-11. These cytokines have been reported to exert influence on the differentiation of cells derived from the bone marrow stroma through target cell receptors that utilize gp130-associated signal transduction pathways. Dexamethasone had no effect on the other cytokines expressed under growth medium conditions and was not observed to increase the expression of any of the cytokines measured in this study. In contrast, IL-1 alpha increased the expression of G-CSF, M-CSF, LIF, IL-6 and IL-11 and induced the expression of GM-CSF. IL-1 alpha had no effect on SCF expression and was not observed to decrease the production of any of the cytokines assayed. These data indicate that MPCs exhibit a distinct cytokine expression profile. We interpret this cytokine profile to suggest that MPCs serve specific supportive functions in the microenvironment of bone marrow. MPCs provide inductive and regulatory information which are consistent with the ability to support hematopoiesis, and also supply autocrine, paracrine, and juxtacrine factors that influence the cells of the marrow microenvironment itself. In addition, the cytokine profiles expressed by MPCs, in response to dexamethasone and IL-1 alpha, identify specific cytokines whose levels of expression change as MPCs differentiate or modulate their phenotype during osteogenic or stromagenic lineage entrance/progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Donor variation in the growth properties and osteogenic potential of human marrow stromal cells.

              Human marrow stromal cells (MSCs) were isolated from posterior illiac crest marrow aspirates obtained from 17 healthy donors, ages 19-45 years, with no apparent physical disability. First passage hMSCs exhibited growth rates in vitro that varied up to 12-fold between donors. No correlation between growth rate and the age or gender of the donor was evident (P
                Bookmark

                Author and article information

                Journal
                Rheumatology
                Oxford University Press (OUP)
                1462-0332
                1462-0324
                January 2001
                January 01 2001
                January 2001
                January 2001
                January 01 2001
                January 2001
                : 40
                : 1
                : 74-83
                Article
                10.1093/rheumatology/40.1.74
                11157145
                68b8fd19-0a65-47fd-9ff1-96247dc3f816
                © 2001
                History

                Comments

                Comment on this article