6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adding a missing piece to the puzzle of oomycete phylogeny: the placement of Rhipidium interruptum ( Rhipidiaceae)

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oomycetes are a group of fungus-like organisms, which phylogenetically comprise early diverging lineages that are mostly holocarpic, and two crown classes, the Peronosporomycetes and Saprolegniomycetes, including many well-investigated pathogens of plants and animals. However, there is a poorly studied group, the Rhipidiales, which placement amongst the crown oomycetes is ambiguous. It accommodates several taxa with a sophisticated vegetative and reproductive cycle, as well as structural organisation, that is arguably the most complex in the oomycete lineage. Despite the remarkable morphological complexity and their notable perseverance in the face of faster-growing saprotrophic oomycetes and fungi, the knowledge on Rhipidiales is limited to date, as the most complex members are not easily cultured, even by targeted approaches. This also leads to inadequate sequence data for the order, which was sourced from only the two least complex out of seven introduced genera, i.e. Sapromyces and Salispina. In the present study, ex-situ baiting was done using various fruit substrates, and naturally-shed twigs or fruits acquired from water bodies were examined. As a result of these efforts, the species Rhipidium interruptum was obtained and gross cultivation was accomplished using poplar ( Populus nigra) twigs as substrate, which allowed further documentation of both asexual and sexual reproduction. This enabled phylogenetic and detailed morphological study, as well as an epitypification of the species. Phylogenetic analyses based on cox2 and nrLSU sequences revealed Rhipidium as the sister genus of Sapromyces. The morphological studies done support a conspecificity of R. interruptum and R. continuum, which might in turn be conspecific with R. americanum. Though several further studies will be required to fit the scattered missing pieces of knowledge on Rhipidiales together revealing a more complete picture of oomycete evolution, we hope that the current study can serve as a cornerstone for future investigations in the group.

          Citation: Tsai I, Thines M (2023). Adding a missing piece to the puzzle of oomycete phylogeny: the placement of Rhipidium interruptum ( Rhipidiaceae). Fungal Systematics and Evolution 11: 95–108. doi: 10.3114/fuse.2023.11.08

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

          We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

            Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space

              Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d N /d S rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.

                Author and article information

                Journal
                Fungal Syst Evol
                Fungal Syst Evol
                FUSE
                Fungal Systematics and Evolution
                Fungal Systematics and Evolution
                2589-3823
                2589-3831
                14 June 2023
                June 2023
                : 11
                : 95-108
                Affiliations
                [1 ] Evolutionary Analyses and Biological Archives, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
                [2 ] Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
                Author notes
                *Corresponding author: ichen.tsai@ 123456senckenberg.de

                Corresponding editor: P.W. Crous

                Article
                10.3114/fuse.2023.11.08
                10983831
                38562587
                68bc7628-329d-4c16-a39c-9c1168a292c0
                © 2023 Westerdijk Fungal Biodiversity Institute

                Fungal Systematics and Evolution is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

                History
                : 13 April 2023
                : 6 June 2023
                Categories
                Articles

                dna sequences,epitype,gross cultivation,phylogeny,rhipidiales,rhipidium interruptum

                Comments

                Comment on this article

                Related Documents Log