Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model.

Nature genetics

Transcription Factors, SOXE Transcription Factors, RNA, Messenger, growth & development, embryology, Neural Crest, Mutation, Molecular Sequence Data, Mice, Mutant Strains, Mice, Inbred C57BL, Mice, Inbred C3H, Mice, genetics, Hirschsprung Disease, biosynthesis, High Mobility Group Proteins, Gene Expression Regulation, Developmental, Disease Models, Animal, DNA-Binding Proteins, DNA, Complementary, Base Sequence, Animals, Amino Acid Sequence

Read this article at

ScienceOpenPublisherPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Hirschsprung disease (HSCR, MIM #142623) is a multigenic neurocristopathy (neural crest disorder) characterized by absence of enteric ganglia in a variable portion of the distal colon. Subsets of HSCR individuals also present with neural crest-derived melanocyte deficiencies (Hirschsprung-Waardenburg, HSCR-WS, MIM #277580). Murine models have been instrumental in the identification and analysis of HSCR disease genes. These include mice with deficiencies of endothelin B receptor (Ednrb(s-l); refs 1,2) endothelin 3 (Edn3(ls): refs 1,3) the tyrosine kinase receptor cRet and glial-derived neurotrophic factor. Another mouse model of HSCR disease, Dom, arose spontaneously at the Jackson Laboratory. While Dom/+ heterozygous mice display regional deficiencies of neural crest-derived enteric ganglia in the distal colon, Dom/Dom homozygous animals are embryonic lethal. We have determined that premature termination of Sox10, a member of the SRY-like HMG box family of transcription factors, is responsible for absence of the neural crest derivatives in Dom mice. We demonstrate expression of Sox10 in normal neural crest cells, disrupted expression of both Sox10 and the HSCR disease gene Ednrb in Dom mutant embryos, and loss of neural crest derivatives due to apoptosis. Our studies suggest that Sox10 is essential for proper peripheral nervous system development. We propose SOX10 as a candidate disease gene for individuals with HSCR whose disease does not have an identified genetic origin.

      Related collections

      Most cited references 29

      • Record: found
      • Abstract: found
      • Article: not found

      Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9.

      A human autosomal XY sex reversal locus, SRA1, associated with the skeletal malformation syndrome campomelic dysplasia (CMPD1), has been placed at distal 17q. The SOX9 gene, a positional candidate from the chromosomal location and expression pattern reported for mouse Sox9, was isolated and characterized. SOX9 encodes a putative transcription factor structurally related to the testis-determining factor SRY and is expressed in many adult tissues, and in fetal testis and skeletal tissue. Inactivating mutations on one SOX9 allele identified in nontranslocation CMPD1-SRA1 cases point to haploinsufficiency for SOX9 as the cause for both campomelic dysplasia and autosomal XY sex reversal. The 17q breakpoints in three CMPD1 translocation cases map 50 kb or more from SOX9.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene.

        Induction of testis development in mammals requires the presence of the Y-chromosome gene SRY. This gene must exert its effect by interacting with other genes in the sex-determination pathway. Cloning of a translocation chromosome breakpoint from a sex-reversed patient with campomelic dysplasia, followed by mutation analysis of an adjacent gene, indicates that SOX9, an SRY-related gene, is involved in both bone formation and control of testis development.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret.

          Receptor tyrosine kinases (RTKs) are cell-surface molecules that transduce signals for cell growth and differentiation. The RTK encoded by the c-ret proto-oncogene is rearranged and constitutively activated in a large proportion of thyroid papillary carcinomas, and germ-line point mutations in c-ret seem to be responsible for the dominantly inherited cancer syndromes multiple endocrine neoplasia (MEN) types 2A and B. The gene is expressed in the developing central and peripheral nervous systems (sensory, autonomic and enteric ganglia) and the excretory system (Wolffian duct and ureteric bud epithelium) of mice, indicating that it may play a role in normal development. Here we show that mice homozygous for a targeted mutation in c-ret develop to term, but die soon after birth, showing renal agenesis or severe dysgenesis, and lacking enteric neurons throughout the digestive tract. Ret is thus an essential component of a signalling pathway required for renal organogenesis and enteric neurogenesis.
            Bookmark

            Author and article information

            Journal
            10.1038/ng0198-60
            9425902

            Comments

            Comment on this article