5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mass Spectrometric Imaging of the Brain Demonstrates the Regional Displacement of 6-Monoacetylmorphine by Naloxone

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Overdose is the main cause of mortality among heroin users. Many of these overdose-induced deaths can be prevented through the timely administration of naloxone (NLX), a nonselective mu (μ)-, kappa (κ)-, and delta (δ)-opioid receptor antagonist. NLX competitively inhibits opioid-overdose-induced respiratory depression without eliciting any narcotic effect itself. The aim of this study was to investigate the antagonistic action of NLX by comparing its distribution to that of 6-monacetylmorphine (6-MAM), heroin’s major metabolite, in a rodent model using mass spectrometric imaging (MSI) in combination with liquid chromatography–tandem mass spectrometry (LC–MS/MS). Male Sprague–Dawley rats ( n = 5) received heroin (10 mg kg –1) intraperitoneally, NLX (10 mg kg –1) intranasally, and NLX injected intranasally 5 min after heroin administration. The animals were sacrificed 15 min after dose and brain tissues were harvested. The MSI image analysis showed a region-specific distribution of 6-MAM in the brain regions including the corpus callosum, hippocampal formation, cerebral cortex, corticospinal tracts, caudate putamen, thalamus, globus pallidus, hypothalamus, and basal forebrain regions of the brain. The antagonist had a similar biodistribution throughout the brain in both groups of animals that received NLX or NLX after heroin administration. The MSI analysis demonstrated that the intensity of 6-MAM in these brain regions was reduced following NLX treatment. The decrease in 6-MAM intensity was caused by its displacement by the antagonist and its binding to these receptors in these specific brain regions, consequently enhancing the opioid elimination. These findings will contribute to the evaluation of other narcotic antagonists that might be considered for use in the treatment of drug overdose via MSI.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Breathlessness in humans activates insular cortex.

          Dyspnea (shortness of breath, breathlessness) is a major and disabling symptom of heart and lung disease. The representation of dyspnea in the cerebral cortex is unknown. In the first study designed to explore the central neural structures underlying perception of dyspnea, we evoked the perception of severe 'air hunger' in healthy subjects by restraining ventilation below spontaneous levels while holding arterial oxygen and carbon dioxide levels constant. PET revealed that air hunger activated the insular cortex. The insula is a limbic structure also activated by visceral stimuli, temperature, taste, nausea and pain. Like dyspnea, such perceptions underlie behaviors essential to homeostasis and survival.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Naloxone distribution and cardiopulmonary resuscitation training for injection drug users to prevent heroin overdose death: a pilot intervention study.

            K Seal (2005)
            Fatal heroin overdose has become a leading cause of death among injection drug users (IDUs). Several recent feasibility studies have concluded that naloxone distribution programs for heroin injectors should be implemented to decrease heroin over-dose deaths, but there have been no prospective trials of such programs in North America. This pilot study was undertaken to investigate the safety and feasibility of training injection drug using partners to perform cardiopulmonary resuscitation (CPR) and administer naloxone in the event of heroin overdose. During May and June 2001, 24 IDUs (12 pairs of injection partners) were recruited from street settings in San Francisco. Participants took part in 8-hour training in heroin overdose prevention, CPR, and the use of naloxone. Following the intervention, participants were prospectively followed for 6 months to determine the number and outcomes of witnessed heroin overdoses, outcomes of participant interventions, and changes in participants' knowledge of overdose and drug use behavior. Study participants witnessed 20 heroin overdose events during 6 months follow-up. They performed CPR in 16 (80%) events, administered naloxone in 15 (75%) and did one or the other in 19 (95%). All overdose victims survived. Knowledge about heroin overdose management increased, whereas heroin use decreased. IDUs can be trained to respond to heroin overdose emergencies by performing CPR and administering naloxone. Future research is needed to evaluate the effectiveness of this peer intervention to prevent fatal heroin overdose.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain.

              While there is an abundance of pharmacological and biochemical evidence to suggest the existence of multiple opioid receptors, their precise localization within the brain is unclear. To help clarify this issue, the present study examined the distributions of the mu, delta, and kappa opioid receptor subtypes in the rat forebrain and midbrain using in vitro autoradiography. Mu and delta receptors were labeled with the selective ligands 3H-DAGO (Tyr- D-Ala-Gly-MePhe-Gly-ol), and 3H-DPDPE (D-Pen2, D-Pen5-enkephalin), respectively, while the kappa receptors were labeled with 3H-(-)bremazocine in the presence of unlabeled DAGO and DPDPE. Based on previous findings in our laboratory, the labeling conditions were such that each ligand selectively occupied approximately 75% of each of the opioid sites. The results demonstrated that all 3 opioid receptor subtypes were differentially distributed in the rat brain. Mu binding was dense in anterior cingulate cortex, neocortex, amygdala, hippocampus, ventral dentate gyrus, presubiculum, nucleus accumbens, caudate putamen, thalamus, habenula, interpeduncular nucleus, pars compacta of the substantia nigra, superior and inferior colliculi, and raphe nuclei. In contrast, delta binding was restricted to only a few brain areas, including anterior cingulate cortex, neocortex, amygdala, olfactory tubercle, nucleus accumbens, and caudate putamen. Kappa binding, while not as widespread as observed with mu binding, was densely distributed in the amygdala, olfactory tubercle, nucleus accumbens, caudate putamen, medial preoptic area, hypothalamus, median eminence, periventricular thalamus, and interpeduncular nucleus. While all 3 opioid receptor subtypes could sometimes be localized within the same brain area, their precise distribution within the region often varied widely. For example, in the caudate putamen, mu binding had a patchy distribution, while delta and kappa sites were diffusely distributed, with delta sites being particularly dense ventrolaterally and kappa sites being concentrated ventromedially. These results support the existence of at least 3 distinct opioid receptors with possibly separate functional roles.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                27 May 2020
                09 June 2020
                : 5
                : 22
                : 12596-12602
                Affiliations
                []Catalysis and Peptide Research Unit, University of KwaZulu-Natal , Westville Campus, Durban 3629, South Africa
                []Department of Criminology, University of KwaZulu-Natal , Durban 4041, South Africa
                [§ ]Department of Chemistry, University of Zululand , Richards Bay 3900, South Africa
                []Department of Pharmaceutical Science, University of KwaZulu-Natal , Westville Campus, Durban 3629, South Africa
                Author notes
                [* ]Email: baijnath.sooraj@ 123456gmail.com . Office: +27 31 260 81799, Cell: +27 84 562 1530.
                Article
                10.1021/acsomega.9b03570
                7288357
                68d686d8-627f-4c0b-8a45-d0124a60da06
                Copyright © 2020 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 24 October 2019
                : 04 May 2020
                Categories
                Article
                Custom metadata
                ao9b03570
                ao9b03570

                Comments

                Comment on this article