52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Role of MeCP2 in the Brain

      1 , 1 , 1 , 1
      Annual Review of Cell and Developmental Biology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methyl-CpG binding protein 2 (MeCP2) was first identified in 1992 as a protein that binds specifically to methylated DNA. Mutations in the MECP2 gene were later found to be the cause of an autism spectrum disorder, Rett syndrome. Despite almost 20 years of research into the molecular mechanisms of MeCP2 function, many questions are yet to be answered conclusively. This review considers several key questions and attempts to evaluate the current state of evidence. For example, is MeCP2 just a methyl-CpG binding protein? Is it a multifunctional protein or primarily a transcriptional repressor? We also consider whether MeCP2, as a chromosome-binding protein, acts at specific sites within the genome or more globally, and in which cell types it is functionally important. Finally, we consider two alternative views of MeCP2 in the brain: as a regulator of brain development or as a factor that helps maintain neuronal/glial function.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.

          Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.

            CpG methylation in vertebrates correlates with alterations in chromatin structure and gene silencing. Differences in DNA-methylation status are associated with imprinting phenomena and carcinogenesis. In Xenopus laevis oocytes, DNA methylation dominantly silences transcription through the assembly of a repressive nucleosomal array. Methylated DNA assembled into chromatin binds the transcriptional repressor MeCP2 which cofractionates with Sin3 and histone deacetylase. Silencing conferred by MeCP2 and methylated DNA can be relieved by inhibition of histone deacetylase, facilitating the remodelling of chromatin and transcriptional activation. These results establish a direct causal relationship between DNA methylation-dependent transcriptional silencing and the modification of chromatin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells.

              Autism spectrum disorders (ASD) are complex neurodevelopmental diseases in which different combinations of genetic mutations may contribute to the phenotype. Using Rett syndrome (RTT) as an ASD genetic model, we developed a culture system using induced pluripotent stem cells (iPSCs) from RTT patients' fibroblasts. RTT patients' iPSCs are able to undergo X-inactivation and generate functional neurons. Neurons derived from RTT-iPSCs had fewer synapses, reduced spine density, smaller soma size, altered calcium signaling and electrophysiological defects when compared to controls. Our data uncovered early alterations in developing human RTT neurons. Finally, we used RTT neurons to test the effects of drugs in rescuing synaptic defects. Our data provide evidence of an unexplored developmental window, before disease onset, in RTT syndrome where potential therapies could be successfully employed. Our model recapitulates early stages of a human neurodevelopmental disease and represents a promising cellular tool for drug screening, diagnosis and personalized treatment. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Annual Review of Cell and Developmental Biology
                Annu. Rev. Cell Dev. Biol.
                Annual Reviews
                1081-0706
                1530-8995
                November 10 2011
                November 10 2011
                : 27
                : 1
                : 631-652
                Affiliations
                [1 ]Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom; email: , , ,
                Article
                10.1146/annurev-cellbio-092910-154121
                21721946
                68dd69f2-b20f-476e-962e-9dde08c903ee
                © 2011
                History

                Comments

                Comment on this article