16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Oleic acid, the main monounsaturated fatty acid of olive oil, suppresses Her-2/neu (erbB-2) expression and synergistically enhances the growth inhibitory effects of trastuzumab (Herceptin) in breast cancer cells with Her-2/neu oncogene amplification.

      Annals of Oncology
      Antibodies, Monoclonal, pharmacology, Antibodies, Monoclonal, Humanized, Apoptosis, Breast Neoplasms, pathology, Cell Proliferation, Dietary Fats, Drug Interactions, Female, Flow Cytometry, Gene Expression Regulation, Neoplastic, drug effects, Humans, In Situ Nick-End Labeling, Oleic Acid, Plant Oils, chemistry, Receptor, ErbB-2, biosynthesis, Tumor Cells, Cultured

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The relationship between the intake of olive oil, the richest dietary source of the monounsaturated fatty acid oleic acid (OA; 18:1n-9), and breast cancer risk and progression has become a controversial issue. Moreover, it has been suggested that the protective effects of olive oil against breast cancer may be due to some other components of the oil rather than to a direct effect of OA. Using flow cytometry, western blotting, immunofluorescence microscopy, metabolic status (MTT), soft-agar colony formation, enzymatic in situ labeling of apoptosis-induced DNA double-strand breaks (TUNEL assay analyses), and caspase-3-dependent poly-ADP ribose polymerase (PARP) cleavage assays, we characterized the effects of exogenous supplementation with OA on the expression of Her-2/neu oncogene, which plays an active role in breast cancer etiology and progression. In addition, we investigated the effects of OA on the efficacy of trastuzumab (Herceptin), a humanized monoclonal antibody binding with high affinity to the ectodomain of the Her-2/neu-coded p185(Her-2/neu) oncoprotein. To study these issues we used BT-474 and SKBr-3 breast cancer cells, which naturally exhibit amplification of the Her-2/neu oncogene. Flow cytometric analyses demonstrated a dramatic (up to 46%) reduction of cell surface-associated p185(Her-2/neu) following treatment of the Her-2/neu-overexpressors BT-474 and SK-Br3 with OA. Indeed, this effect was comparable to that found following exposure to optimal concentrations of trastuzumab (up to 48% reduction with 20 microg/ml trastuzumab). Remarkably, the concurrent exposure to OA and suboptimal concentrations of trastuzumab (5 microg/ml) synergistically down-regulated Her-2/neu expression, as determined by flow cytometry (up to 70% reduction), immunoblotting, and immunofluorescence microscopy studies. The nature of the cytotoxic interaction between OA and trastuzumab revealed a strong synergism, as assessed by MTT-based cell viability and anchorage-independent soft-agar colony formation assays. Moreover, OA co-exposure synergistically enhanced trastuzumab efficacy towards Her-2/neu overexpressors by promoting DNA fragmentation associated with apoptotic cell death, as confirmed by TUNEL and caspase-3-dependent PARP cleavage. In addition, treatment with OA and trastuzumab dramatically increased both the expression and the nuclear accumulation of p27(Kip1), a cyclin-dependent kinase inhibitor playing a key role in the onset and progression of Her-2/neu-related breast cancer. Finally, OA co-exposure significantly enhanced the ability of trastuzumab to inhibit signaling pathways downstream of Her-2/neu, including phosphoproteins such as AKT and MAPK. These findings demonstrate that OA, the main monounsaturated fatty acid of olive oil, suppresses Her-2/neu overexpression, which, in turn, interacts synergistically with anti-Her-2/neu immunotherapy by promoting apoptotic cell death of breast cancer cells with Her-2/neu oncogene amplification. This previously unrecognized property of OA offers a novel molecular mechanism by which individual fatty acids may regulate the malignant behavior of breast cancer cells and therefore be helpful in the design of future epidemiological studies and, eventually, dietary counseling.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Humanization of an anti-p185HER2 antibody for human cancer therapy.

          The murine monoclonal antibody mumAb4D5, directed against human epidermal growth factor receptor 2 (p185HER2), specifically inhibits proliferation of human tumor cells overexpressing p185HER2. However, the efficacy of mumAb4D5 in human cancer therapy is likely to be limited by a human anti-mouse antibody response and lack of effector functions. A "humanized" antibody, humAb4D5-1, containing only the antigen binding loops from mumAb4D5 and human variable region framework residues plus IgG1 constant domains was constructed. Light- and heavy-chain variable regions were simultaneously humanized in one step by "gene conversion mutagenesis" using 311-mer and 361-mer preassembled oligonucleotides, respectively. The humAb4D5-1 variant does not block the proliferation of human breast carcinoma SK-BR-3 cells, which overexpress p185HER2, despite tight antigen binding (Kd = 25 nM). One of seven additional humanized variants designed by molecular modeling (humAb4D5-8) binds the p185HER2 antigen 250-fold and 3-fold more tightly than humAb4D5-1 and mumAb4D5, respectively. In addition, humAb4D5-8 has potency comparable to the murine antibody in blocking SK-BR-3 cell proliferation. Furthermore, humAb4D5-8 is much more efficient in supporting antibody-dependent cellular cytotoxicity against SK-BR-3 cells than mumAb4D5, but it does not efficiently kill WI-38 cells, which express p185HER2 at lower levels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy.

            The HER-2/neu oncogene encodes a transmembrane tyrosine kinase receptor with extensive homology to the epidermal growth factor receptor. HER-2/neu has been widely studied in breast cancer. In this review, the association of HER-2/neu gene and protein abnormalities studied by Southern and slot blotting, immunohistochemistry, enzyme immunoassays, and fluorescence in situ hybridization with prognosis in breast cancer is studied in depth by review of a series of 47 published studies encompassing more than 15,000 patients. The relative advantages of gene amplification assays and frozen/fresh tissue immunohistochemistry over paraffin section immunohistochemistry are discussed. The significance of HER-2/neu overexpression in ductal carcinoma in situ and the HER-2/neu status in uncommon female breast conditions and male breast cancer are also considered. The potential value of HER-2/neu status for the prediction of response to therapy in breast cancer is presented in the light of a series of recently published studies showing a range of impact on the outcome of patients treated with hormonal, cytotoxic, and radiation therapies. The evidence that HER-2/neu gene and protein abnormalities in breast cancer predict resistance to tamoxifen therapy and relative sensitivity to chemotherapy regimens including adriamycin is presented. The review will also evaluate the status of serum-based testing for circulating the HER-2/neu receptor protein and its ability to predict disease outcome and therapy response. In the final section, the review will briefly present preliminary data concerning the use of antibody-based therapies directed against the HER-2/neu protein and their potential to become a new modality for breast cancer treatment. The recently presented phase III clinical trial evidence that systemic administration of anti-HER2 antibodies (Herceptin), alone and in combination with cytotoxic chemotherapy in patients with HER-2/neu overexpressing primary tumors, can increase the time to recurrence and overall response rates in metastatic breast cancer is reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biologic and therapeutic role of HER2 in cancer.

              Overexpression of the human epidermal growth factor-2 (HER2) oncogene in human breast carcinomas has been associated with a more aggressive course of disease. The reason for this association is still unclear, although it has been suggested to rest in increased proliferation, vessel formation, and/or invasiveness. Alternatively, prognosis may not be directly related to the presence of the oncoprotein on the cell membrane, but instead to the breast carcinoma subset identified by HER2 overexpression and characterized by a peculiar gene expression profile. HER2 has also been associated with sensitivity to anthracyclins and resistance to endocrine therapy, suggesting that tyrosine kinase receptor and hormone receptor pathways represent two major proliferation pathways exclusively active in breast carcinomas, one sensitive to chemotherapeutic drugs and the other to antiestrogens. HER2 currently represents one of the most appropriate targets for specific therapy. Indeed, trastuzumab, a monoclonal antibody directed against the extracellular domain of HER2, is therapeutically active in HER2-positive breast carcinomas. However, a consistent number of HER2-positive tumors is not responsive to HER2-driven therapy, indicating the need for a better understanding of the mechanism of action of this new biological drug in vivo. While preclinical studies suggest antibody-dependent cell cytotoxicity as the major mechanism, determination of NK activity at the time of treatment remains mandatory, especially in patients treated with immunosuppressive drugs. The efficacy of prophylactic vaccination has been fully demonstrated in preclinical models, whereas ongoing studies of active immunotherapy using a variety of vaccination regimens against HER2 in tumor-bearing mice and patients have met with only moderate success.
                Bookmark

                Author and article information

                Comments

                Comment on this article