23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Major Antigenic Membrane Protein of “ Candidatus Phytoplasma asteris” Selectively Interacts with ATP Synthase and Actin of Leafhopper Vectors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phytoplasmas, uncultivable phloem-limited phytopathogenic wall-less bacteria, represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are presumably involved in determining vector specificity. Such a role has been proposed for phytoplasma transmembrane proteins encoded by circular extrachromosomal elements, at least one of which is a plasmid. Little is known about the interactions between major phytoplasma antigenic membrane protein (Amp) and insect vector proteins. The aims of our work were to identify vector proteins interacting with Amp and to investigate their role in transmission specificity. In controlled transmission experiments, four Hemipteran species were identified as vectors of “ Candidatus Phytoplasma asteris”, the chrysanthemum yellows phytoplasmas (CYP) strain, and three others as non-vectors. Interactions between a labelled (recombinant) CYP Amp and insect proteins were analysed by far Western blots and affinity chromatography. Amp interacted specifically with a few proteins from vector species only. Among Amp-binding vector proteins, actin and both the α and β subunits of ATP synthase were identified by mass spectrometry and Western blots. Immunofluorescence confocal microscopy and Western blots of plasma membrane and mitochondrial fractions confirmed the localisation of ATP synthase, generally known as a mitochondrial protein, in plasma membranes of midgut and salivary gland cells in the vector Euscelidius variegatus. The vector-specific interaction between phytoplasma Amp and insect ATP synthase is demonstrated for the first time, and this work also supports the hypothesis that host actin is involved in the internalization and intracellular motility of phytoplasmas within their vectors. Phytoplasma Amp is hypothesized to play a crucial role in insect transmission specificity.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanical integration of actin and adhesion dynamics in cell migration.

          Directed cell migration is a physical process that requires dramatic changes in cell shape and adhesion to the extracellular matrix. For efficient movement, these processes must be spatiotemporally coordinated. To a large degree, the morphological changes and physical forces that occur during migration are generated by a dynamic filamentous actin (F-actin) cytoskeleton. Adhesion is regulated by dynamic assemblies of structural and signaling proteins that couple the F-actin cytoskeleton to the extracellular matrix. Here, we review current knowledge of the dynamic organization of the F-actin cytoskeleton in cell migration and the regulation of focal adhesion assembly and disassembly with an emphasis on how mechanical and biochemical signaling between these two systems regulate the coordination of physical processes in cell migration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The PredictProtein server.

            PredictProtein (http://www.predictprotein.org) is an Internet service for sequence analysis and the prediction of protein structure and function. Users submit protein sequences or alignments; PredictProtein returns multiple sequence alignments, PROSITE sequence motifs, low-complexity regions (SEG), nuclear localization signals, regions lacking regular structure (NORS) and predictions of secondary structure, solvent accessibility, globular regions, transmembrane helices, coiled-coil regions, structural switch regions, disulfide-bonds, sub-cellular localization and functional annotations. Upon request fold recognition by prediction-based threading, CHOP domain assignments, predictions of transmembrane strands and inter-residue contacts are also available. For all services, users can submit their query either by electronic mail or interactively via the World Wide Web.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              CDD: specific functional annotation with the Conserved Domain Database

              NCBI's Conserved Domain Database (CDD) is a collection of multiple sequence alignments and derived database search models, which represent protein domains conserved in molecular evolution. The collection can be accessed at http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, and is also part of NCBI's Entrez query and retrieval system, cross-linked to numerous other resources. CDD provides annotation of domain footprints and conserved functional sites on protein sequences. Precalculated domain annotation can be retrieved for protein sequences tracked in NCBI's Entrez system, and CDD's collection of models can be queried with novel protein sequences via the CD-Search service at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. Starting with the latest version of CDD, v2.14, information from redundant and homologous domain models is summarized at a superfamily level, and domain annotation on proteins is flagged as either ‘specific’ (identifying molecular function with high confidence) or as ‘non-specific’ (identifying superfamily membership only).
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                25 July 2011
                : 6
                : 7
                : e22571
                Affiliations
                [1 ]Istituto di Virologia Vegetale, Consiglio Nazionale delle Ricerche, Torino, Italy
                [2 ]Dipartimento di Valorizzazione e Protezione delle Risorse Agroalimentari - Entomologia e Zoologia Applicate all'Ambiente, Università degli Studi di Torino, Grugliasco, Italy
                [3 ]Istituto di Protezione delle Piante, Consiglio Nazionale delle Ricerche, Torino, Italy
                [4 ]Dipartimento di Biologia Vegetale, Università degli Studi di Torino, Torino, Italy
                [5 ]Entomology and Plant Pathology Department, Oklahoma State University, Stillwater, Oklahoma, United States of America
                Indian Institute of Science, India
                Author notes

                Conceived and designed the experiments: CM DB LG. Performed the experiments: LG AG RB. Analyzed the data: CM DB LG RB. Contributed reagents/materials/analysis tools: CM DB RB. Wrote the paper: LG CM DB JF. English revision: JF.

                Article
                PONE-D-11-07176
                10.1371/journal.pone.0022571
                3143171
                21799902
                68e75358-bef8-440e-a3e9-b0d2e6a87db4
                Galetto et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 April 2011
                : 23 June 2011
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Microbiology
                Host-Pathogen Interaction
                Plant Science
                Plant Pathology
                Plant Pathogens

                Uncategorized
                Uncategorized

                Comments

                Comment on this article