6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Anderson Transition of Cold Atoms with Synthetic Spin-Orbit Coupling in Two-Dimensional Speckle Potentials

      Physical Review Letters
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Anderson localization of a non-interacting Bose-Einstein condensate

            One of the most intriguing phenomena in physics is the localization of waves in disordered media. This phenomenon was originally predicted by Anderson, fifty years ago, in the context of transport of electrons in crystals. Anderson localization is actually a much more general phenomenon, and it has been observed in a large variety of systems, including light waves. However, it has never been observed directly for matter waves. Ultracold atoms open a new scenario for the study of disorder-induced localization, due to high degree of control of most of the system parameters, including interaction. Here we employ for the first time a noninteracting Bose-Einstein condensate to study Anderson localization. The experiment is performed with a onedimensional quasi-periodic lattice, a system which features a crossover between extended and exponentially localized states as in the case of purely random disorder in higher dimensions. Localization is clearly demonstrated by investigating transport properties, spatial and momentum distributions. We characterize the crossover, finding that the critical disorder strength scales with the tunnelling energy of the atoms in the lattice. Since the interaction in the condensate can be controlled at will, this system might be employed to solve open questions on the interplay of disorder and interaction and to explore exotic quantum phases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Anderson Transitions

              The physics of Anderson transitions between localized and metallic phases in disordered systems is reviewed. The term ``Anderson transition'' is understood in a broad sense, including both metal-insulator transitions and quantum-Hall-type transitions between phases with localized states. The emphasis is put on recent developments, which include: multifractality of critical wave functions, criticality in the power-law random banded matrix model, symmetry classification of disordered electronic systems, mechanisms of criticality in quasi-one-dimensional and two-dimensional systems and survey of corresponding critical theories, network models, and random Dirac Hamiltonians. Analytical approaches are complemented by advanced numerical simulations.
                Bookmark

                Author and article information

                Journal
                PRLTAO
                Physical Review Letters
                Phys. Rev. Lett.
                American Physical Society (APS)
                0031-9007
                1079-7114
                March 2017
                March 6 2017
                : 118
                : 10
                Article
                10.1103/PhysRevLett.118.105301
                68ff422c-93d6-4b5b-818a-f4315f8e5720
                © 2017

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article