49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SiR–Hoechst is a far-red DNA stain for live-cell nanoscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell-permeable DNA stains are popular markers in live-cell imaging. Currently used DNA stains for live-cell imaging are either toxic, require illumination with blue light or are not compatible with super-resolution microscopy, thereby limiting their utility. Here we describe a far-red DNA stain, SiR–Hoechst, which displays minimal toxicity, is applicable in different cell types and tissues, and is compatible with super-resolution microscopy. The combination of these properties makes this probe a powerful tool for live-cell imaging.

          Abstract

          Existing DNA stains for live cell microscopy are either toxic, require illumination with blue light, or are not compatible with super-resolution microscopy. Here the authors develop SiRHoechst, a non-toxic far-red DNA stain that is compatible with super-resolution microscopy.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          The fluorescent toolbox for assessing protein location and function.

          Advances in molecular biology, organic chemistry, and materials science have recently created several new classes of fluorescent probes for imaging in cell biology. Here we review the characteristic benefits and limitations of fluorescent probes to study proteins. The focus is on protein detection in live versus fixed cells: determination of protein expression, localization, activity state, and the possibility for combination of fluorescent light microscopy with electron microscopy. Small organic fluorescent dyes, nanocrystals ("quantum dots"), autofluorescent proteins, small genetic encoded tags that can be complexed with fluorochromes, and combinations of these probes are highlighted.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A general method to improve fluorophores for live-cell and single-molecule microscopy

            Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires cell-permeable fluorescent ligands, however, limiting utility to a small number of classic fluorophores. Here, we describe a simple structural modification that improves the brightness and photostability of dyes while preserving spectral properties and cell permeability. Inspired by molecular modeling, we replaced the N,N-dimethylamino substituents in tetramethylrhodamine with four-membered azetidine rings. This addition of two carbon atoms doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging. The novel substitution is generalizable, yielding a palette of chemical dyes with improved quantum efficiencies that spans the UV and visible range.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fluorogenic probes for live-cell imaging of the cytoskeleton.

              We introduce far-red, fluorogenic probes that combine minimal cytotoxicity with excellent brightness and photostability for fluorescence imaging of actin and tubulin in living cells. Applied in stimulated emission depletion (STED) microscopy, they reveal the ninefold symmetry of the centrosome and the spatial organization of actin in the axon of cultured rat neurons with a resolution unprecedented for imaging cytoskeletal structures in living cells.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                01 October 2015
                2015
                : 6
                : 8497
                Affiliations
                [1 ]Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, NCCR in Chemical Biology , 1015 Lausanne, Switzerland
                [2 ]Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus (VBC) , Dr Bohr Gasse 3, 1030 Vienna, Austria
                [3 ]Department of Chemistry—BMC, Uppsala University , 75123 Uppsala, Sweden
                [4 ]Department of Biochemistry, NCCR in Chemical Biology, University of Geneva , 1211 Geneva, Switzerland
                [5 ]Department NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
                Author notes
                Article
                ncomms9497
                10.1038/ncomms9497
                4600740
                26423723
                690a4b85-ec32-4778-b213-c95a4eaf460d
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 15 July 2015
                : 27 August 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article