17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phosphodiesterase-5 inhibitors and the heart: compound cardioprotection?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Novel cardioprotective agents are needed in both heart failure (HF) and myocardial infarction. Increasing evidence from cellular studies and animal models indicate protective effects of phosphodiesterase-5 (PDE5) inhibitors, drugs usually reserved as treatments of erectile dysfunction and pulmonary arterial hypertension. PDE5 inhibitors have been shown to improve contractile function in systolic HF, regress left ventricular hypertrophy, reduce myocardial infarct size and suppress ischaemia-induced ventricular arrhythmias. Underpinning these actions are complex but increasingly understood cellular mechanisms involving the cyclic GMP activation of protein kinase-G in both cardiac myocytes and the vasculature. In clinical trials, PDE5 inhibitors improve symptoms and ventricular function in systolic HF, and accumulating epidemiological data indicate a reduction in cardiovascular events and mortality in PDE5 inhibitor users at high cardiovascular risk. Here, we focus on the translation of underpinning basic science to clinical studies and report that PDE5 inhibitors act through a number of cardioprotective mechanisms, including a direct myocardial action independent of the vasculature. We conclude that future clinical trials should be designed with these mechanisms in mind to identify patient subsets that derive greatest treatment benefit from these novel cardioprotective agents.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial.

          Studies in experimental and human heart failure suggest that phosphodiesterase-5 inhibitors may enhance cardiovascular function and thus exercise capacity in heart failure with preserved ejection fraction (HFPEF). To determine the effect of the phosphodiesterase-5 inhibitor sildenafil compared with placebo on exercise capacity and clinical status in HFPEF. Multicenter, double-blind, placebo-controlled, parallel-group, randomized clinical trial of 216 stable outpatients with HF, ejection fraction ≥50%, elevated N-terminal brain-type natriuretic peptide or elevated invasively measured filling pressures, and reduced exercise capacity. Participants were randomized from October 2008 through February 2012 at 26 centers in North America. Follow-up was through August 30, 2012. Sildenafil (n = 113) or placebo (n = 103) administered orally at 20 mg, 3 times daily for 12 weeks, followed by 60 mg, 3 times daily for 12 weeks. Primary end point was change in peak oxygen consumption after 24 weeks of therapy. Secondary end points included change in 6-minute walk distance and a hierarchical composite clinical status score (range, 1-n, a higher value indicates better status; expected value with no treatment effect, 95) based on time to death, time to cardiovascular or cardiorenal hospitalization, and change in quality of life for participants without cardiovascular or cardiorenal hospitalization at 24 weeks. Median age was 69 years, and 48% of patients were women. At baseline, median peak oxygen consumption (11.7 mL/kg/min) and 6-minute walk distance (308 m) were reduced. The median E/e' (16), left atrial volume index (44 mL/m2), and pulmonary artery systolic pressure (41 mm Hg) were consistent with chronically elevated left ventricular filling pressures. At 24 weeks, median (IQR) changes in peak oxygen consumption (mL/kg/min) in patients who received placebo (-0.20 [IQR, -0.70 to 1.00]) or sildenafil (-0.20 [IQR, -1.70 to 1.11]) were not significantly different (P = .90) in analyses in which patients with missing week-24 data were excluded, and in sensitivity analysis based on intention to treat with multiple imputation for missing values (mean between-group difference, 0.01 mL/kg/min, [95% CI, -0.60 to 0.61]). The mean clinical status rank score was not significantly different at 24 weeks between placebo (95.8) and sildenafil (94.2) (P = .85). Changes in 6-minute walk distance at 24 weeks in patients who received placebo (15.0 m [IQR, -26.0 to 45.0]) or sildenafil (5.0 m [IQR, -37.0 to 55.0]; P = .92) were also not significantly different. Adverse events occurred in 78 placebo patients (76%) and 90 sildenafil patients (80%). Serious adverse events occurred in 16 placebo patients (16%) and 25 sildenafil patients (22%). Among patients with HFPEF, phosphodiesterase-5 inhibition with administration of sildenafil for 24 weeks, compared with placebo, did not result in significant improvement in exercise capacity or clinical status. clinicaltrials.gov Identifier: NCT00763867.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Calcium and Excitation-Contraction Coupling in the Heart

            Cardiac contractility is regulated by changes in intracellular Ca concentration ([Ca2+]i). Normal function requires that [Ca2+]i be sufficiently high in systole and low in diastole. Much of the Ca needed for contraction comes from the sarcoplasmic reticulum and is released by the process of calcium-induced calcium release. The factors that regulate and fine-tune the initiation and termination of release are reviewed. The precise control of intracellular Ca cycling depends on the relationships between the various channels and pumps that are involved. We consider 2 aspects: (1) structural coupling: the transporters are organized within the dyad, linking the transverse tubule and sarcoplasmic reticulum and ensuring close proximity of Ca entry to sites of release. (2) Functional coupling: where the fluxes across all membranes must be balanced such that, in the steady state, Ca influx equals Ca efflux on every beat. The remainder of the review considers specific aspects of Ca signaling, including the role of Ca buffers, mitochondria, Ca leak, and regulation of diastolic [Ca2+]i.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study.

              The prevalence of heart failure with preserved ejection fraction is increasing. The prognosis worsens with pulmonary hypertension and right ventricular (RV) failure development. We targeted pulmonary hypertension and RV burden with the phosphodiesterase-5 inhibitor sildenafil. Forty-four patients with heart failure with preserved ejection fraction (heart failure signs and symptoms, diastolic dysfunction, ejection fraction ≥50%, and pulmonary artery systolic pressure >40 mm Hg) were randomly assigned to placebo or sildenafil (50 mg thrice per day). At 6 months, there was no improvement with placebo, but sildenafil mediated significant improvements in mean pulmonary artery pressure (-42.0±13.0%) and RV function, as suggested by leftward shift of the RV Frank-Starling relationship, increased tricuspid annular systolic excursion (+69.0±19.0%) and ejection rate (+17.0±8.3%), and reduced right atrial pressure (-54.0±7.2%). These effects may have resulted from changes within the lung (reduced lung water content and improved alveolar-capillary gas conductance, +15.8±4.5%), the pulmonary vasculature (arteriolar resistance, -71.0±8.2%), and left-sided cardiac function (wedge pulmonary pressure, -15.7±3.1%; cardiac index, +6.0±0.9%; deceleration time, -13.0±1.9%; isovolumic relaxation time, -14.0±1.7%; septal mitral annulus velocity, -76.4±9.2%). Results were similar at 12 months. The multifaceted response to phosphodiesterase-5 inhibition in heart failure with preserved ejection fraction includes improvement in pulmonary pressure and vasomotility, RV function and dimension, left ventricular relaxation and distensibility (structural changes and/or ventricular interdependence), and lung interstitial water metabolism (wedge pulmonary pressure decrease improving hydrostatic balance and right atrial pressure reduction facilitating lung lymphatic drainage). These results enhance our understanding of heart failure with preserved ejection fraction and offer new directions for therapy. URL: http://www.clinicaltrials.gov. UNIQUE IDENTIFIER: NCT01156636.
                Bookmark

                Author and article information

                Journal
                Heart
                Heart
                heartjnl
                heart
                Heart
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                1355-6037
                1468-201X
                August 2018
                8 March 2018
                : 104
                : 15
                : 1244-1250
                Affiliations
                [1] departmentUnit of Cardiac Physiology, Division of Cardiovascular Sciences , School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre , Manchester, UK
                Author notes
                [Correspondence to ] Dr David Charles Hutchings, Institute of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9NT, UK; david.hutchings-2@ 123456manchester.ac.uk
                Article
                heartjnl-2017-312865
                10.1136/heartjnl-2017-312865
                6204975
                29519873
                690ecc9a-3f57-4ab9-a054-9ab0c422a5b6
                © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

                This is an open access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

                History
                : 14 December 2017
                : 08 February 2018
                : 12 February 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000274, British Heart Foundation;
                Categories
                Review
                1506
                2269
                Custom metadata
                unlocked

                Cardiovascular Medicine
                myocardial disease basic science,cardiac risk factors and prevention,cardiac arrhythmias and resuscitation science,coronary artery disease,heart failure

                Comments

                Comment on this article

                scite_

                Similar content224

                Cited by28

                Most referenced authors719