22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Dimensional Semiparametric Gaussian Copula Graphical Models

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we propose a semiparametric approach, named nonparanormal skeptic, for efficiently and robustly estimating high dimensional undirected graphical models. To achieve modeling flexibility, we consider Gaussian Copula graphical models (or the nonparanormal) as proposed by Liu et al. (2009). To achieve estimation robustness, we exploit nonparametric rank-based correlation coefficient estimators, including Spearman's rho and Kendall's tau. In high dimensional settings, we prove that the nonparanormal skeptic achieves the optimal parametric rate of convergence in both graph and parameter estimation. This celebrating result suggests that the Gaussian copula graphical models can be used as a safe replacement of the popular Gaussian graphical models, even when the data are truly Gaussian. Besides theoretical analysis, we also conduct thorough numerical simulations to compare different estimators for their graph recovery performance under both ideal and noisy settings. The proposed methods are then applied on a large-scale genomic dataset to illustrate their empirical usefulness. The R language software package huge implementing the proposed methods is available on the Comprehensive R Archive Network: http://cran. r-project.org/.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Sparse inverse covariance estimation with the graphical lasso.

          We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm--the graphical lasso--that is remarkably fast: It solves a 1000-node problem ( approximately 500,000 parameters) in at most a minute and is 30-4000 times faster than competing methods. It also provides a conceptual link between the exact problem and the approximation suggested by Meinshausen and Bühlmann (2006). We illustrate the method on some cell-signaling data from proteomics.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Model selection and estimation in the Gaussian graphical model

            M Yuan, Y. Lin (2007)
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A Class of Statistics with Asymptotically Normal Distribution

                Bookmark

                Author and article information

                Journal
                09 February 2012
                2012-07-27
                Article
                1202.2169
                690ff921-cb89-4756-a9c2-114e0663938b

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                34 pages, 10 figures; the Annals of Statistics, 2012
                stat.ML

                Comments

                Comment on this article