49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evidence for common horizontal transmission of Wolbachia among butterflies and moths

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Wolbachia is one of the most widespread bacteria on Earth. Previous research on Wolbachia-host interactions indicates that the bacterium is typically transferred vertically, from mother to offspring, through the egg cytoplasm. Although horizontal transmission of Wolbachia from one species to another is reported to be common in arthropods, limited direct ecological evidence is available. In this study, we examine horizontal transmission of Wolbachia using a multilocus sequence typing (MLST) strains dataset and used Wolbachia and Lepidoptera genomes to search for evidence for lateral gene transfer (LGT) in Lepidoptera, one of the most diverse cosmopolitan insect orders. We constructed a phylogeny of arthropod-associated MLST Wolbachia strains and calibrated the age of Wolbachia strains associated with lepidopteran species.

          Results

          Our results reveal inter-specific, inter-generic, inter-familial, and inter-ordinal horizontal transmission of Wolbachia strains, without discernible geographic patterns. We found at least seven probable cases of horizontal transmission among 31 species within Lepidoptera and between Lepidoptera and other arthropod hosts. The divergence time analysis revealed that Wolbachia is recently (22.6–4.7 mya, 95 % HPD) introduced in Lepidoptera. Analysis of nine Lepidoptera genomes ( Bombyx mori, Danaus plexippus, Heliconius melpomene, Manduca sexta, Melitaea cinxia, Papilio glaucus, P. polytes, P. xuthus and Plutella xylostella) yielded one possible instance of Wolbachia LGT.

          Conclusions

          Our results provide evidence of high incidence of identical and multiple strains of Wolbachia among butterflies and moths, adding Lepidoptera to the growing body of evidence for common horizontal transmission of Wolbachia. This study demonstrates interesting dynamics of this remarkable and influential microorganism.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12862-016-0660-x) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: not found
          • Article: not found

          Inference from Iterative Simulation Using Multiple Sequences

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wolbachia: master manipulators of invertebrate biology.

            Wolbachia are common intracellular bacteria that are found in arthropods and nematodes. These alphaproteobacteria endosymbionts are transmitted vertically through host eggs and alter host biology in diverse ways, including the induction of reproductive manipulations, such as feminization, parthenogenesis, male killing and sperm-egg incompatibility. They can also move horizontally across species boundaries, resulting in a widespread and global distribution in diverse invertebrate hosts. Here, we review the basic biology of Wolbachia, with emphasis on recent advances in our understanding of these fascinating endosymbionts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fast algorithms for large-scale genome alignment and comparison.

              We describe a suffix-tree algorithm that can align the entire genome sequences of eukaryotic and prokaryotic organisms with minimal use of computer time and memory. The new system, MUMmer 2, runs three times faster while using one-third as much memory as the original MUMmer system. It has been used successfully to align the entire human and mouse genomes to each other, and to align numerous smaller eukaryotic and prokaryotic genomes. A new module permits the alignment of multiple DNA sequence fragments, which has proven valuable in the comparison of incomplete genome sequences. We also describe a method to align more distantly related genomes by detecting protein sequence homology. This extension to MUMmer aligns two genomes after translating the sequence in all six reading frames, extracts all matching protein sequences and then clusters together matches. This method has been applied to both incomplete and complete genome sequences in order to detect regions of conserved synteny, in which multiple proteins from one organism are found in the same order and orientation in another. The system code is being made freely available by the authors.
                Bookmark

                Author and article information

                Contributors
                zaheerento@gmail.com
                kawahara@flmnh.ufl.edu
                Journal
                BMC Evol Biol
                BMC Evol. Biol
                BMC Evolutionary Biology
                BioMed Central (London )
                1471-2148
                27 May 2016
                27 May 2016
                2016
                : 16
                : 118
                Affiliations
                Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
                Article
                660
                10.1186/s12862-016-0660-x
                4882834
                27233666
                6912dd74-a52a-439c-8150-e4ab535579aa
                © Ahmed et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 October 2015
                : 18 April 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000001, National Science Foundation;
                Award ID: DEB-1354585
                Award ID: DEB-1541500
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/http://dx.doi.org/10.13039/100007698, University of Florida;
                Funded by: FundRef http://dx.doi.org/10.13039/100007698, University of Florida;
                Award ID: Research Opportunity Seed Fund (ROSF)
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Evolutionary Biology
                butterfly,genome,lateral gene transfer,mlst strains,moth,symbiont,transmission route
                Evolutionary Biology
                butterfly, genome, lateral gene transfer, mlst strains, moth, symbiont, transmission route

                Comments

                Comment on this article